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Form of Empirical ROCs in Discrimination and Diagnostic Tasks:
Implications for Theory and Measurement of Performance

John A. Swets
BBN Laboratories Incorporated, Cambridge, Massachusetts

A sample of empirical relative operating characteristics (ROCs) is presented, drawn both from dis-
crimination tasks in experimental psychology and from diagnostic tasks in several practical fields.
These illustrative ROCs are seen to be fitted well by a straight line, of varying slope, on a binormal
graph, This result has fundamental implications for models and indices of performance. The form of
empirical ROCs is consistent with one version of the variable-criterion model provided by signal
detection theory, and is inconsistent both with other versions of that model and with the main threshold
models. That form supporis the use of certain indices of discrimination accuracy derived from detection
theory, and substantiates the potential unreliability of others of that heritage and, more importantly,
the unreliability of the several accuracy indices in common use that can be shown to imply one or
another threshold model. The preferred detection-theory indices of accuracy are ones that accommodate
the varying slope of empirical ROCs, These indices are effectively independent of the decision criterion,
which can be indexed separately. Measuring both accuracy and the decision criterion appropriately
enables one to delineate which of these dependent variables is affected by which independent variables
in psychological studies, and to assess the efficacy as well as the accuracy of diagnostic systems.

A companion article derives the form of the relafive {or re-
ceiver) operating characteristic (ROC) that is algebraically implied
by each of a dozen or so commonly used indices of discrimination
accuracy, and identifies the models of the discrimination process
that are implied by the main categories of those forms (Swets,
1986). In this article I present a broad sample of empirical ROCs
for comparison with the theoretical forms. They are drawn from
discrimination tasks used in the psychology of perception, learn-
ing, memory, and cognition, and from several practical fields in
which a discrimination, or diagnosis, is made in the interest of
prediction, selection, or corrective action, The fields included
are medical imaging, information retrieval, weather forecasting,
aptitude testing, and polygraph lie detection.

Precis of ROC Form, Indices, and Models
ROC Form

The ROC, in a sentence, is a graph showing the conditional
probability of choosing Alternative A when that alternative occurs
(here denoted by A, for “hit”) plotted against the conditional
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probability of choosing A when Alternative B occurs (here de-
noted by /, for “false alarm™). Both 4 and fincrease as the ten-
dency to choose Alternative A increases, or as the criterion for
choosing A becomes more lenient.

The form of an ROC is best visualized on a “binormal”
graph—a graph in which the usual probability coordinates are
rescaled so that their corresponding normal-deviate values are
linearly spaced, as in Figure 1. On such a graph, empirical ROCs
are consistently fitted well by a straight line that varies in slope;
the slopes are generally between 0.5 and 1.5, as indicated in Figure
1a by dashed lines. (Other details of the figure are discussed
next.)

Indices and Models

The previous article (Swets, 1986) showed that the form of
predicted ROQCs serves to sort common accuracy indices and
their implied models into three categories. The first category
contains models and indices that predict linear, or effectively
linear, binormal ROCs of slope = 1.0. The indices and models
of the second category predict binormal ROCs that are distinctly
curvilinear. Those in the third category predict, or permit, ROCs
consistent with both the observed lingarity and variable slope,
and are thus preferred. The earlier article showed how indices
in the first two categories are subject to considerable unreliability.

Indices in the first category include one of the several indices
associated with signal detection theory, namely ¢’ (Green &
Swets, 1966/1974), and three indices nearly equivalkent to o'
Luce’s (1959, 1963) g, the log-odds ratio (LOR; e.g., Goodman,
1970}, and Yule’s (1912) 0. The index &' predicts a linear ROC
of slope = 1.0, as indicated by the solid lines in Figure la. The
indices %, LOR, and (2 imply a slightly curved ROC, as shown
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in Figure 1b, that is indistinguishable from a straight line of
slope = 1.0 with ordinary amounts of data.

The model for &' is a variable-criterion model of the general
sort considered in signal detection theory, but specifically one in
which observations under each alternative have normal (Gaus-
sian) distributions of equal variance. Two normal distributions
(though with unequal variance) are shown at bottom right in
Figure 1a, and are denoted n and sn for the “noise-alone” and
“signal-plus-noise” alternatives. The criterion is symbolized in
the figure by the vertical line, x,; observations x > x, lead to the
choice of sn and observations x < x. lead to the choice of 7. A
variable-criterion model consistent with n, LOR, and Q contains

logistic distributions of equal variance, which are similar to the
normal distribution, as shown at bottom right in Figure 1b.
The second category contains a variety of other common in-
dices, including two versions of the “hit” probability corrected
for chance success, here denoted by He and H'c (where He =
(A= fV[1l = f)and H'c = h — f); percentage correct, PC: the
kappa statistic, K, as a chance-corrected PC; and the fourfold
point correlation coefficient, ¢. The index Hc implies the cur-
vilinear ROC of Figure 2a. The index H'c leads to the curvilinear
ROC of Figure 2b; as do PC and K when the alternatives to be
discriminated are equally probable; and the ROC for ¢ for equal
probabilities is practically indistinguishable from that of Figure
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Figure 1. A binormal graph, on which probabilities (left-hand and bottom axes) are scaled so that the
corresponding normal-deviate values are linearly scaled (right-hand and top axes). a: the solid lines of slope =
1.0 represent relative operating characteristics (ROCs) consistent with the d' index. (The index values shown
are of A,, the area under the binormal ROC [on ordinary scales]. The dashed lines. of slope # 1.0, represent
ROCs consistent with the A, index, which might arise from distributions of observations of “noise alone™
[#] and “signal plus noise™ [sn] of unequal variance, as illustrated at bottom right; the distributions shown
are normal. The slopes of 0.5 and 1.5 bound almost all empirical ROCs. h = probability of a “hit”; f =
probability of a “false alarm.”) b (facing pagej: ROCs implied by the 5, log odds ratio (LOR), and Yule's @
indices, with index values of 5. (Logistic distributions of equal variance, as illustrated at bottom right,
produce ROCs having the form of those implied algebraically by 5, LOR, and (.)
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2b. For the last three indices, unequal probabilities tilt the ROC
away from symmetry about the minor diagonal.

The index H¢ implies a figh-threshold model and H'¢, PC,
and ¢ imply a double-threshold model, In detection-theory terms,
threshold models are based on uniform distributions, as shown
in Figures 2a and 2b.

The third category contains a few nearly equivalent indices,
including the perpendicular distance from the origin of the bi-
normal ROC graph to the ROC, but perhaps the most common
is the area under an ROC (on ordinary scales) that is assumed
to be linear on a binormal graph, denoted 4,. The index 4, is
consistent with a linear (binormal) ROC having a slope in the
range of slopes found empirically. Swets and Pickett (1982) dis-
cuss the indices in this category and list a revised version of
Dorfman and Alf’s (1969) computer program for estimating A4,.
NNustrative values of 4, are shown in Figure 1a; its values range
from .50 at the positive diagonal, representing chance perfor-
mance, to 1.00 for perfect discrimination. This index is equivalent
to the percentage of correct responses made in a two-alternative,
forced-choice test, that is, when a random draw from each of
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the sn and n distributions is compared on each trial (Green &
Swets, 1966/1974).

The index A, is associated with a variable-criterion model in
which the underlying distributions can have unequal variances,
asillustrated by the normal distributions at bottom right in Figure
la. It should be noted that 4, does not assume normal distri-
butions, but rather any form of distribution that can be trans-
formed monotonically to the normal distribution. Thus A4,, and
the binormal assumption more generally, make a particular as-
sumption about the (observable) functional form of the ROC,
and not about the (usually unobservable) forms of the underlying
distributions. As discussed elsewhere, the forms of the underlying
distributions imply a particular form of ROC, but, when the
distributions are continuous (as in Figure 1) as opposed to uni-
form (as in Figure 2), the converse is not true. In general, the
ROC reflects the difference between two distributions rather than
the distributions themselves, and any monotonic transformation
applied to two underlying distributions will result in the same
ROC (Egan, 1975; Swets, Tanner, & Birdsall, 1961). Simply as
a convenient convention, 4, is parameterized in terms of an ef-
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Figure 1. {continued)
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Figure 2. a: Theoretical relative operating characteristics (ROCs) of the high-threshold model on a binormal
graph, labeled by the index associated with that model, H.. (The uniform distributions show some observations
of “‘signal plus noise™ [sn] and none of “noise alone™ [#] to exceed a high threshold symbolized by the dotted
line; the solid vertical line connotes a variable criterion according to which, in this drawing, about one-third
of the observations below the threshold lead to the choice of the sn alternative. 4 = probability of a “hit™;
/= probability of a “false alarm.”) b (facing page): Theoretical ROCs of the double-threshold model on a
binormal graph, labeled by one of the indices associated with that model, H'¢. (The uniform distributions
of n and sn are related to two thresholds [dotted lines]; in this illustration, a variable criterion [solid vertical
line] is set so that about one-third of the observations falling between the thresholds lead to the choice of the

sn alternative.,)

fective pair of normal distributions, and then the binormal ROC
slope consistent with 4, is equal to the ratio of standard de-
viations, o,/0.."

Scope and Procedure of This Article

The indices of the three categories delineated are the main
ones used in experimental psychology and in practical fields like
those mentioned previously. They include not only indices de-
vised in one or more fields but essentially all measures of statis-
tical association, inasmuch as the latter (for 2 X 2 tables) are
usually functions either of the cross-product ratio (i.e., ad/bc,
where those letters symbolize the cell entries)—as are %, LOR,
and @—or of the correlation coefficient, ¢, which depends also

on the marginal frequencies of the table (Bishop, Fienberg, &
Holland, 1975).

After a few notes on the way ROCs for individual observers
are obtained and then combined into average or typical ROCs,

! The unequal-variance model presents a problem for theory in that
the observation or decision axis (labeled x in Figure 1a) is not monotonic
with the likelihood ratio, that is, with the ratio of the ordinate of the sn
distribution to the ordinate of the n distribution; in particula, the like-
lihood ratio is > 1.0 at both ends of this axis. As noted earlier (Laming,
1973: Swets, Tanner, & Birdsall, 1961), this model requires adding a
substantive psychological assumption to the structure of statistical decision
theory. One would prefer a better way to handle binormal ROC slopes
unequal to 1.0, and better ways exist for certain fixed slopes (Swets, 1986),
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Figure 2. (continued)

I present the sample of empirical ROCs selected for this article.
In the four practical fields other than medical imaging, they are
illustrative of the only sets of ROCs of which 1 am aware. In that
field and in experimental psychology, the main selection criterion
was that they be based on a sufficient number of trials to show
relatively little variability, in order to give a good look at their
form. A second criterion, applied to ROCs in psychology, was
that they represent the various types of discrimination tasks used
in psychological experiments. As far as I know, no empirical
ROCs support a form other than the one inferred here.

For the several ROCs shown, the interest lies first in the ade-
quacy of a linear fit and then in the slope of the line. The goodness
of fit is reported when available, that is, when the data have been
submitted to a computer program, such as that described by
Dorfman and Alf (1969), that makes a chi-square test of a max-

but the unequal-variance model seems to be the best available for treating
variable slopes. The aberrations that occur in RQCs, if the decision is
based on x rather than the likelihood ratio of x, are usually small and at
the edges of the graph.

imum-likelihood estimation of a linear fit. The slope is reported
in every case, as measured graphically from a visual fit when an
objective fit was not made. The question of whether some pattern
exists in the variation of slope that is observed is discussed briefly
in a closing section.

All of the ROCs that follow are presented as being effectively
linear and not in the least suggestive of one of the curvilinear
forms of Figure 2. The visual effect is compelling enough, I be-
lieve, to permit us to forego a statistical comparison of each
empirical ROC with each theoretical ROC.

Notes on Data Collection and Combination

The direct way to trace out an ROC is to have an observer
adopt a different decision criterion, or response bias, from one
group of trials to another, and so obtain several different points
(Tanner & Swets, 1954). A more efficient way is to have the
observer use a rating scale—say, a five-category scale of confi-
dence that a particular alternative is the correct one—in a single
group of trials (Swets et al., 1961). The procedure for obtaining
simultaneously a number of different ROC points (one fewer
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point than the number of categories) from rating data is detailed
by Green and Swets (1966/1974). In brief, one assumes in analysis
that observations that lead to responses of the highest category
of confidence are those that meet the strictest decision criterion
being used, and that observations leading to responses of either
of the two highest categories are those that meet the next strictest
criterion, and so on, cumulatively (when the lowest category is
finally included, the ROC point calculated in the uninformative
h = = 1.0). Most of the data I present were obtained by some
version of the rating-scale technique.

It is often desirable to portray a composite ROC based on
several observers. Macmillan and Kaplan (1985) have published
a general analysis of ways to obtain composite ROCs and support
the pooling of rating data. Most of the ROCs I present are based
on such a pooling.
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Empirical ROCs in Experimental Psychology

The empirical ROCs displayed here are drawn from a range
of tasks studied in experimental psychology—tasks focused on
sensory functions or perception, memaory, learning, and concep-
tual judgment.

Vision

The first rating ROCs obtained are shown in Figure 3 (Swets,
Tanner, & Birdsall, 1955, 1961). Four observers used a 6-category
rating scale for a signal that was a flash of a spot of light, and
made nearly 1,200 observations. The figure is reproduced from
Dorfman and Alf (1969); a later version of their program (Swets
& Pickett, 1982) indicates that the probabilities associated with
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Figure 3. Relative operating characteristics (ROCs) for 4 observers in a vision experiment. (Yx = normal-
deviate value corresponding to the conditional probability ofa “hit.”” —Zx = normal-deviate value corresponding
to the conditional probability of a “false alarm.” (From “Maximum Likelihood Estimation of Parameters of
Signal-Detection Theory and Determination of Confidence Intervals—Rating Method Data” by D. D. Dorfman
and E. Alf, Jr, 1969, Journal of Mathematical Psychology, 6, p. 492. Copyright 1969 by Academic Press,
Reprinted by permission.)
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the chi-square tests of the linear fits are approximately .70, .05,
.40, and .60 for the four observers, respectively, and that the
group chi-square is not statistically significant (>.25). The four
binormal slopes are (.71, 0.74, 0.72, and 0.89.

Recognition Memory— Words

Some results of Egan’s (1958) extension of the ROC to memory
for words are reproduced in Figure 4. Subjects were given either
one or two presentations of a list of 100 words and were later
asked to rate their confidence (7-category scale) that each of a
list of 200 words was on the first list; the 200-word list contained
all of the words on the 100-word list. The labels on the graph’s

axes are the probabilities that “old’” words (ordinate) and “new”
words (abscissa) are said to be “old.” The bottom ROC gives the
combined result for the middle 50% of the 16 subjects given
one presentation; the top ROC shows the same thing, but for
two presentations. The binormal slopes of the two lines are 0,67
and 0.71.

Recognition Memory—Qdors

Fifteen subjects of Rabin and Cain (1984) were exposed to 20
odors and were tested with those 20 embedded in a set of 40.
They used a 10-category rating scale and were tested after in-
tervals of 10 min, 1 day, and 7 days—each time with a different
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Figure 4. Two relative operating characteristics (ROCs), each based on 8 subjects, in an experiment on
recognition memory for words. (r = number of repetitions of the list of “old” stimuli. S, = presentation of
a “new” stimulus. §, = presentation of an “old” stimulus. Y, = a “yes” response to an “old” stimulus,
indicating that an old stimulus was called old. z, = normal-deviate value corresponding to the conditional
probability of a “false alarm,” P[Y,|S,). z, = normal-deviate value corresponding to the conditional probability
of a *“hit)”" p[Y,IS.]). (From “Recognition Memory and the Operating Characteristic” by J. P. Egan, 1958,
Technical Note, Indiana University, Hearing and Communication Laboratory, following p. 28. Reprinted by

permission. )
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set of 20 new odors. The pooled results are reproduced in Figure
5. The bottom two ROCs have slopes very near 1.0; the top ROC
has a slope of about [.1.

Animal Learning

Blough (1967) reinforced pigeons for pecking at a single wave-
length and measured their (lower) rates of responding to nearby
wavelengths. These response rates indicated the pigeons’ cer-
tainty that the reinforced stimulus (signal) was present. Figure
6 shows quite good linear fits in the bottom two panels, for two
birds, with slopes ranging mainly between 0.5 and 1.0 (with one
at about 0.33).

Conceptual Judgment

Lee (1963) devised a discrimination task to make the obser-
vational continuum external to the observer, but we can view it

as a cognitive task. Specifically, a dot was presented somewhere
along the long dimension of a plain file card. The experimenter
located two normal distributions along this dimension (not visible
to the observer), randomly chose one on each trial, and then
randomly chose a point from it to present to the observer. In-
formation about the distributions was made available to the sub-
ject by means of feedback after each trial as to the source dis-
tribution of the point on that trial. In short, the subject was to
build up an impression of experimental distributions similar to
the picture at bottom right in Figure la (though Lee’s distri-
butions were of equal variance). The ROCs for two observers,
based on an 8-category scale, are reproduced in Figure 7. Their
slopes are about 1.05,

ROCs From Practical Fields

Considered next are illustrative ROC data from the fields of
medical diagnosis (specifically, medical imaging), information
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Figure 5. Three relative operating characteristics (ROCs), representing 15 subjects at three retention intervals,
in an experiment on recognition memory for odors. (Ag, Aj, and A; = Group A, a group tested at all three
intervals: 0 = 10 min; | = [ day; and 7 = 7 days. From “Odor Recognition: Familiarity, Identifiability, and
Encoding Consistency” by M. D. Rabin and W, 8. Cain, 1984, Journal of Experimental Psychology: Learning,
Memary, and Cognition, 10, p. 320. Copyright 1984 by the American Psychological Association. Reprinted

by permission.)
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retrieval, weather forecasting, aptitude testing, and polygraph lie
detection. As in the previous section, the straight-line fit and the
range of binormal slopes are of principal interest. Values of 4,
are mentioned here when comparisons within a given field are
of interest. An article in preparation will examine how well di-
agnostic systems of various kinds perform, and the relative ease
and difficulty of obtaining good estimates of accuracy in different
fields.

Medical Imaging

The ROCs shown in Figure 8 were obtained in an evaluation
of computed tomography (CT) and radionuclide scans (RN) in
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the detection of brain lesions (Swets et al., 1979). One hundred
thirty-six cases of patients subjected to both imaging modalities
were interpreted by 12 radiologists (6 CT specialists and 6 RN
specialists). The cases were selected on the basis of having ade-
quate truth data (histological confirmation of 84 abnormal cases
and 3-month follow-up of 52 normal cases) and to provide ap-
propriate representation of lesion tvpes and locations.

The ROCs shown were obtained via a 5-category rating scale
of probability of abnormality. Each ROC is based on the pooled
rating data of six radiologists. This method of combining data
was defended on the grounds that the ROCs obtained from in-
dividual readers were fitted well by straight lines (chi-square
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Figure 6. Relative operating characteristics (ROCs) from 2 pigeons in an experiment on stimulus generalization
along a continuum of wavelength of light. (Data from 28 sessions. Panel A shows the generalization gradient
to several unreinforced wavelengths [S*] around 582 nm, the reinforced wavelength [SP]; Panel B shows the
ROCs on ordinary scales, of the six stimuli nearest 582 nm, for 1 bird. Those ROCs are shown on a binormal
graph in [C], and the ROCs of a second bird are shown in [D]. Axes in [B], [C], and [D] represent relative
frequencies that a given number [7] of responses or fewer were made to the stimulus in question. From
“Stimulus Generalization as Signal Detection in Pigeons™ by D. S. Blough, 1967, Science, 158, p. 941.
Copyright 1967 by the American Association for the Advancement of Science. Reprinted by permission.)
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Figure 7. Relative operating characteristics (ROCs) for 2 observers in an
experiment on conceptual judgment. (z- = normal-deviate value corre-
sponding to the conditional probability of a “false alarm.” z, = normal-
deviate value corresponding to the conditional probability of a “hit.”
From **Choosing Among Confusably Distributed Stimuli With Specified
Likelihood Ratios” by W, Lee, 1963, Perceptual and Motor Skills, 16, p.
230. Copyright 1963 by Southern Universities Press. Adapted by per-
mission.)

analysis yielded p > .20 for 11 of the 12 readers) and showed
little variation across readers in accuracy (4, from .96 to .98 for
CT and from .83 to .89 for RN). Both the pooling of rating data
and the averages of A, yielded A, = .97 for CT and 4, = .87 for
RN. Individual slopes averaged 0.70 for CT (range from 0.49
to 1.04), compared with the pooled slope of 0.61, and 0.52 for
RN (range from 0.37 to 0.68), compared with the pooled slope
of 0.51.

Figure 9 shows an ROC representing 10 cytotechnologists who
viewed approximately 6,000 individual cell photomicrographs
to discriminate between abnormal and normal cells in screening
for cervical cancer (Bacus et al., 1984). True cell class was based
on full case information and consensus among other cytotech-
nologists and pathologists. The observers classified the cells rel-
ative 1o 18 categories of both type and severity of abnormality;
the experimenter ordered those categories according to the like-
lihood of abnormality to obtain the 17-point ROC shown. The
relevant indices are 4, = .87, slope = 1.33. Computer-based,
automated evaluation of the same slides—based on a multivariate
Gaussian classification scheme and standard measurements of
area, density, color, shape, and texture—yielded a very similar
ROC, with A, = .90 and slope = 1.21 (Bacus, 1982). (A review
of medical studies reporting ROCs that were available at the
time was given by Swets, 1979, who found values of 4, generally
between .85 and .95),

Information Retrieval

Three major studies of information retrieval conducted in the
mid-1960s were analyzed shortly thereafter in ROC terms (Swets,

1969). They were conducted at Harvard University (Salton &
Lesk, 1966), at Cranfield, England (Cleverdon & Keen, 1966),
and at Arthur D. Little, Inc. (Giuliano & Jones, 1966). The first
and third studies were of computer-based systems; the second
was of a traditional, manual library system. The computer system
in the first study, for each query, examined every word of every
document in a given collection, either of the full text or just the
abstract; made associations of words in the document with words
in the query by various techniques (word-stem match, synonym
recognition, statistical word-word associations, etc.); and cal-
culated the relevance of each document to the query. The ROCs
were obtained by choosing various decision criteria (rating cat-
egories) on this relevance scale. Actual relevance and nonreley-
ance were determined by a panel of judges.

Figure 10 shows the results of six retrieval methods (as indi-
cated in the figure) applied to one of the collections of documents
used in the first study. For each method, 35 queries were directed
to a collection of 82 documents. The six lines, fitted by eve, are
reproduced on the full plot at the bottom of the figure. For present
purposes, note that straight lines give a quite good fit (a possible
staircase effect might be due to the small number of relevant
documents per query) and that the slopes vary slightly from 1.0
(approximately 0.85 to 1.0). The scale along the negative diag-
onals in the graphs is of the accuracy index d' (which is suitable
when the slope is 1.0). The six methods are seen to vary little
about &' = 1.0, which corresponds to 4, = .76.

Other document collections and retrieval methods used in the
three studies showed linear fits as good or better than those in
Figure 10. All of them showed a similarly small effect of method
within a given collection. Slopes typically range from about 1.0
to 1.3. Values of 4, range from .76 to .96 in the Harvard study,
from .83 10 91 in the Cranfield study, and from .87 to .93 in
the Arthur D. Little, Inc. study. (Overall, five of the six major
conditions across studies produced values of A, that are almost
uniformly spread between .85 and .95.)

Weather Forecasting

Mason (1982) published some 20 ROCs for forecasting various
types of weather, of which 6 are shown in Figure [ 1. They are
all based on the probability reports generally issued by forecasters
(usually in 13 categories for rain, and in smaller numbers of
categories for other weather events). Whether the weather event
in question actually occurred or not was determined according
to procedures established in the weather forecasting field.

Figure I1a shows an ROC for rain based on some 17,000
reports at Chicago. The linear fit is very good; slope = 0.97, 4, =
.85. Fits based on about 3,000 reports of individual forecasters
were almost as good. Figure 11b refers to prediction of a mini-
mum temperature < 28°F near Albuquerque; slope = 1.38, 4, =
.89. Figure | lc refers to predictions of one or more tornadoes
in areas delineated by the Severe Storms Forecast Center in Kan-
sas City; based on about 90 reports, slope = 0.70, 4, = .77.
(These figures are based on data published earlier by A. Murphy,
who was instrumental in the move to probability forecasting,
and R. L. Winkler [Murphy, 1977; Murphy & Winkler, 1977a,
1977b].) Figure 11d shows ROCs for fog-risk forecasts at the
Canberra, Australia, airport issued 24, 18, or 12 hours earlier
than the specified time, and based on over 300 reports. The 4,
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rises from .72 10 .76 to .81 as the time shortens; the corresponding
slopes are 1.27, 1.22, and 1.0. (Mason’s further analyses show
A, values for rain ranging across locations from .74 to .89, Pre-
dicting lightning and fog gave an A4, of about .75; predicting
temperatures within intervals and tornadoes showed an A, of
about .70. So, the range over-all is approximately .70 to .90.)

Aptitude Testing

Historically, aptitude tests have predicted a continuous vari-
able, principally graded school performance or rated job per-
formance. In this case the product-moment correlation coeffi-
cient serves well as an index of the test’s performance—that is,
of its validity as a predictor—that is based on all available in-
formation. However, the predicted variable may be binary, as
when students working under individually paced instruction
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complete the course or not, or when the rating of workers reduces
to whether or not they can do the job well enough 1o stay on it,
and then the accuracy of the test’s discrimination is of interest.
An accuracy index can serve as an alternate measure of validity.

To simulate such a binary outcome, 1 have analyzed data
(kindly supplied to me by the Navy Personnel Research and
Development Center) with a cut-score for success in a course of
instruction set arbitrarily at the 50th percentile of the distribution
of final grades. Nine ROC points were generated by taking deciles
of aptitude-test scores.

Figure 12 shows the ability of the Armed Forces Qualification
Test to predict such “pass—fail” performance in four Navy
schools: (a) quartermaster, (b) signalman, (c) electrician’s mate,
and (d) mess management. The slopes vary from 0.86 to 0.96,
and the values of 4, vary from .66 to.72. Based on a few hundreds
of students, the linear fits are good: chi-square analysis of 12
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Figure 8. Relative operating characteristics (ROCs), each based on 6 observers, representing two image mo-
dalities in clinical medicine. (CT = computed tomography; RN = radionuclide scans. FP = false-positive
response, or “false alarm.” TP = true-positive response, or “hit.” 4, = the area under the ROC plotted on
ordinary scales. § = slope of the binormal ROC. From “Assessment of Diagnostic Technologies” by J. A.
Swets, R. M. Pickett, S. F. Whitehead, D. J. Getty, J. A. Schnur, J. B, Swets, and B. A. Freeman, Science,
205, p. 757. Copyright 1979 by the American Association for the Advancement of Science. Reprinted by

permission. )



192 JOHN A, SWETS

.99

.98

97

95

.90 .

.70

.50

P(TP)

.30

10
afds

03
02

.01
.01 .03.10

.30 .50 .70
P(FP)

Figure 9. Relative operating characteristic (ROC) for 10 cytotechnologists
screening slides for evidence of disease. (From *“Malignant Cell Detection
and Cervical Cancer Screening” by J. W. Bacus, E. L. Wiley, W. Galbraith,
P. N. Marshall, G. D. Wilbanks, and R. 5. Weinstein, 1984, Analytical

and Quantitative Cytology, 6, p. 125. Copyright 1984 by The International
Academy of Cytology. Reprinted by permission.)

linear fits (based on three different cut scores of final grades)
gave probabilities ranging from .13 to .98.%

Polygraph Lie Detection

The open literature contains about 10 studies of the accuracy
of polygraph lie detection in each of two main classes: field studies
and laboratory, or analogue, studies. The former include various
crimes and compare the polygraph examiners’ decisions with
judicial outcomes, panel decisions, or confessions. The latter are
based on mock or role-playing crimes, so they have an advantage
in the surety of “ground truth” and a disadvantage in the severity
of the consequences. The field studies have been reviewed in the
context of a detection-theory analysis by Ben-Shakbar, Lieblich,
and Bar-Hillel (1982); both classes of studies were reviewed in
an analysis for the federal Office of Technology Assessment (Saxe,
Dougherty, & Cross, 1985).

One of the laboratory studies yielded a 7-point ROC; six of
them can be analyzed (as I have) to provide 2-point ROCs, by
virtue of including an “inconclusive” category along with “de-
ception” and “no deception” categories. The field studies each
yielded a single point in ROC space. Figure 13a shows the one
full ROC available. In a study made by Szucko and Kleinmuntz
{(1981), 15 subjects carried out a mock crime and 15 did not.
Their polygraph records were examined by six interpreters who
judged the likelihood of deception, in response to each of three
questions, on an B-category scale. The six individual ROCs ranged
in A, from approximately .65 to .75; the pooled ROC shown has
an A4, of about .75 and a slope of about 0.95. The straight-line

.90 .97 .99

fit is not good at the ends, which might result from the combi-
nation of a relatively low 4, and a small number of observations
(45). Though, of course, not evidence for linear binormal ROCs,
Figure 13b shows 2-point ROCs from six other laboratory studies.
For them, A, ranges from about .80 to .95 and the slopes range
{with one exception) from about 0.75 to 1.3.

Possible Pattern of Slope Variation

My concern for empirical (binormal) ROC slopes has been to
show that they vary considerably, enough to introduce consid-
erable unreliability if they are assumed, by using a given index,
to be fixed at some particular value. The question may then arise
whether the observed slope variation has some pattern and
whether some account of that pattern can be given. I believe that
a partial pattern can be discerned and that some relevant theory
exists, and so a few remarks on the topic may be heuristic.

In the original development of the signal detection theory that
gave rise to the ROC (Peterson, Birdsall, & Fox, 1954), it was
assumed that a signal is added at times to background noise to
produce a distribution of observations of signal plus noise having
a higher mean value than the distribution of observations of
noise alone. Then, if the signal adds a constant, the two distri-
butions would have the same variance. Given that the binormal
ROC slope under the normal (Gaussian) model equals the ratio
of standard deviations, ¢,/ds;, the ROC slope would be 1.0 in
this case. The signal was assumed in theory to add a constant to
the noise when all of its appropriate parameters—such as fre-
quency, phase, amplitude, starting time, and duration—are fixed
and known to the observer; this signal is “specified exactly” in
the theory's terms.

If, on the other hand, one or more of the signal’s parameters
varies at random from one occurrence 1o another, the signal is
only “specified statistically,” and adds additional variance to that
of the noise. Distributions other than the normal (e.g., exponen-
tial, Rayleigh) can be adduced to treat this case, or the normal
model can be retained with the assumption that oy, > o, and,
therefore, that the ROC slope is <1.0 (Green & Swets, 1966/
1974). Consistent with such a theory, early work on human sen-
sory processes was taken to indicate slopes near 1.0 for pure-
tone signals, specifiable as sine waves, and slopes <1.0 for auditory
signals that are samples of white noise, visual signals that are
flashes of white light, and other signals in which certain param-
eters (e.g., frequency or phase) are not specified exactly. The

2 1 should note that these values of 4, are depressed, as raw correlation
coefficients on the same sample would be, because they are computed
only on the candidates selected to take the course. In correlational terms,
the effect is one of “restriction of range” of the two variables. Similarly,
in discrimination terms, the spectrum of abilities considered is restricted
by the lack of course data on unselected candidates, so that discrimination
within the sample considered is more difficult. A correction for restriction
of range is usually made for correlation coefficients, and a larger study
of Navy data of the sort described here showed median uncorrected and
corrected coefficients of .43 and .73, respectively (Swanson, 1979). T have
not addressed the question of a similar correction for the 4, index, but
Gray, Begg, and Greenes (1984) have provided an approach to the prob-
lem.
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Figure 10. Relative operating characteristics (ROCs) representing six methods of information retrieval. (The
6 fitted lines of the upper panels are also shown in the bottom panel. F = the presentation of an irrelevant
document, R = the response of “‘relevant.” r = the presentation of an irrelevant document. From “Effectiveness
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¢: tornadoes; and d: fog. From “A Model for Assessment of Weather Forecasts” by [. Mason, 1982, dustrafian
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ROCs shown above for white visual signals have slopes mostly
around 0.70.2

The first binormal slopes noted as quite consistently > 1.0 are
the ones for information retrieval, which range mostly from 1.0
to 1.3, as mentioned above. This result seems reasonable, inas-
much as the “signals” are then relevant documents and these

signals are not in any sense added to “noise,” or irrelevant doc-
uments. [n this case, two separate kinds of stimuli, with some

* The idea that uncertainty about the signal adds variance to the sn
distribution, beyond that of the n distribution, might suggest that binormal
slopes < 1.0 will usually be observed whenever a brief signal is added to
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Figure 12. a-d: Relative operating characteristics (ROCs) for aptitude tests predicting performance in four
Navy schools. (Analysis of data supplied by the Navy Personnel Research and Development Center.)

common properties, are presented individually, rather than being
mixed in a single presentation—in effect, signals are presented
without noise. We can suppose that the few documents relevant
to a given query are less variable than the host of documents
irrelevant to that query—that, in terms of the normal model,
g, < g,. The situation is similar in aptitude testing. Those passing
courses are not added to, or mixed with, those failing courses in
a single presentation; the slopes <1.0 for aptitude tests are con-
sistent with the finding that those passing are more variable
(considering here only individuals meeting the test’s criterion
score).

a continuous noise background, because the observer will usually have
some uncertainty ahout at least the location of the signal in time or space.
A related suggestion would be that slopes near 1.0 will result when the
two alternatives to be discriminated are alike with respect to most of
their physical characteristics (e.g., both are brief tones, or lights, or samples
of noise, and vary along a single dimension, such as frequency or am-
plitude). D. R. J. Laming and A, Craig (personal communications, 1985)
have advanced this distinction as providing a good summary of existing
data from sensory tasks.

Beyond this point, though, the picture seems unclear. Why,
in medical images, have we seen slopes <1.0 for brain tumors
(on average, 0.50 to 0.60) and > 1.0 for abnormal tissue cells
(on average, 1.2 to 1.3)? Or why do data show “old™ words
to be more variable than “new” words (slopes near 0.70)7 In
the recognition of “old™” and “new” odors, the present data
show nearly equal variance (slopes near 1.0). Again, some
weather events have shown slopes definitely <1.0, and others,
slopes clearly >1.0.

In the net, several puzzles remain, and support at least the
present use of an area index such as 4,. And, indeed, evidence
suggests that different individuals can produce ROCs of different
slopes under the same signal and noise conditions (¢.g., Green
& Swets, 1966/1974).4

* The present approach assumes that every point on an empirical ROC
represents an observer or system operating at a constant accuracy, but
there may be cases in which that assumption does not hold. For example,
a human observer in a “yes-no” task might discriminate with greater
accuracy at a lenient decision criterion, if that criterion is adopted because
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Figure 13. Relative operating characteristics (ROCs) for polygraph lie detection. a; for 6 examiners in a
laboratory study. (A = probability of a “hit”; f = probability of a false alarm, Based on data from an
unpublished doctoral thesis by J, J. Szucko summarized by Szucko & Kleinmuntz, 1981.) b: 2-point ROCs,
derived from experiments using positive, negative, and inconclusive categories, conducted in 6 laboratories.
(Based on data summarized by Saxe, Dougherty, & Cross, 1985.}

Conclusions

Empirical ROCs drawn from experimental psychology and
several practical fields, representing available discrimination data,
are fitted well on a binormal graph by straight lines of varying
slope. This robust finding supports the use of the accuracy index
A,. It also supports the validity of a particular variable-criterion
model of the discrimingtion process, ene incorperating distri-
butions of unequal variance. The indices o, %, LOR, and Q
imply binormal ROCs that are linear or nearly linear but with
a fixed slope = 1.0, and hence they do not agree sufficiently well
with the data. By the same token, variable-criterion models that
assume equal-variance distributions, which have been associated
with &' and # and can be associated with LOR and Q, are of

the prior probability of a “signal” is high, than at a strict criterion, if
that criterion is adopted because the signal probability is low; a possible
mechanism for this effect is that the signal is better defined when presented
relatively often (Markowitz & Swets, 1967). Knowing when the assumption
of constancy holds and when it does not requires a knowledge of the
distributions underlying the ROC, Thus, knowledge that the distributions
are of equal variance would indicate varying accuracy when a binormal
slope # 1 is obtained. Unfortunately, evidence about the distributions
tends te exist—for example, in machine-based systems for information
retrieval or medical diagnesis, or in aptitude testing—when there is little
reason to doubt the assumption of constant accuracy. In general, the
working assumption of constant accuracy seems preferable to using an
index that leads to the conclusion of inconstancy for all binormal ROC
slopes other than the single slope that it implies. Moreover, the rating-
scale technique is relatively insensitive to variables that might affect ac-
curacy differently at different decision criteria—for example, prior prob-
ability of signal, and rewards and penalties for correct and incorrect re-
sponses.

limited validity and utility. Several other common indices—in-
cluding the chance-corrected hit probabilities, Hc and H'c; per-
centage correct, PC; the kappa statistic, K; and the correlation
coefficient, e—imply binormal ROCs that are distinctly curvi-
linear and diverge considerably from the data. Therefore, their
corresponding models, which are members of the class of thresh-
old models, are invalid. The unreliability of the various indices
that misrepresent empirical ROC form can be substantial: Index
values can vary from low to high, by > 100%, when, in fact,
accuracy is constant {Swets, 1986).

Discussion

Signal detection theory was originally developed as a mathe-
matical theory for the process of detecting radar signals (Pe-
terson et al., 1954), but was soon found useful in understanding
the behavior of human observers of simple visual and auditory
signals (Tanner & Swets, 1954; Tanner, Swets, & Green, 1956),
The general applicability of the theory to human discrimination
was indicated by its ability to treat empirical findings in recog-
nition memory (Egan, 1958). Its applicability to humans, and
to devices that aid or supplant humans, in practical discrimi-
nation or diagnostic tasks was suggested by analyses of infor-
mation-retrieval systems {Swets, 1963, 1969). The common de-
nominator in these tasks is, first, an observation process that
lends varying degrees of assurance about the occurrence of the
alternatives to be discriminated and, second, a desire to assign
those varying degrees to one or the other alternative in some
reasonable way.

In experimental psychology, the process of discrimination is
of interest in its own right: Is it governed by a fixed, physiologically
determined threshold or is it adaptive, via a variable decision
criterion, to different conditions of expectancy and motivation?
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Consistent support for the latter process unifies psychological
conceptions of a broad range of behaviors and indicates the ex-
tensive role of cognitive factors in discrimination tasks. Also, in
experimental psychology, the way in which discrimination acuity
or capacity varies with independent variables can reveal some-
thing substantive about the nature of the particular mechanism
of discrimination—be it perceptual, memorial, or cognitive, In
practical fields, more emphasis is placed on the absolute level of
discrimination acuity that is evidenced, which is of substantive
interest in decisions about using, and attempting to improve on,
a given technique or system for diagnosis (Swets & Pickett, 1982).

The bonus that the appropriate detection-theory model carries
along is the ability it provides, via the ROC, to obtain a relatively
pure index of discrimination capacity-—one largely independent
of the decision criterion or choice tendency—and also an index
of the decision criterion that is operative in any given instance.
Experimental psychology and practical fields thereby gain a valid
and reliable index of discrimination capacity. Psychology, espe-
cially, acquires an ability to determine whether various variables
that effect a change in performance do so by affecting discrim-
ination acuity or the decision criterion (Swets, 1973). An example
here is the finding that the declining hit rate observed in percep-
tual vigilance experiments is often the result of an increasingly
strict criterion rather than of decreasing sensitivity (Parasuraman,
1984).

Practical fields need a criterion-free index of discrimination
capacity when the criterion used with a given system varies widely
over the different settings in which that system is used, and for
which it is being evaluated. Thus, for example, the strictness of
the criterion used with a particular imaging system in clinical
medicine can be quite different in screening and referral settings,
and the criterion used with a weather forecasting system will
differ from one geographical region to another and from one user
of forecast information to another.

Practical fields, moreover, acquire an ability from the ROC to
assess the efficacy of a diagnostic system for a specific setting.
In a given setting, one is fundamentally concerned with some
measure of the system’s utility, for example, its expected value
or payoff, as determined by the probabilities of the various out-
comes of the decision and by the benefits and costs of those
outcomes. For specific settings in which the probabilities, benefits,
and costs are stable and can be estimated, the emphasis is more
on the payofl associated with a particular point on the ROC—
that is, with a particular decision criterion—than on an index
of the locus of all ROC points. For any of several decision rules
that seek to maximize one or another quantity related to utility,
one can calculate the optimal decision criterion, or operating
point on the ROC (Green & Swets, 1966/1974; Swets & Pickett,
1982; Swets & Swets, 1979). And then, usually, the system can
be adjusted to operate at or near that criterion or point. Because
the binormal slopes of empirical ROCs vary widely from one
instance to another, in a manner so far not predictable, both the
calculation of, and adjustment to, the optimal criterion depend
on having the empirical ROC in hand.
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