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Tasks in which an observation is the basis for discriminating between two confusable alternatives are

used widely in psychological experiments. Similar tasks occur routinely in many practical settings in

which the objective is a diagnosis of some kind. Several indices have been proposed to quantify the

accuracy of discrimination, whether the focus is on an observer's capacity or skill, on the usefulness

of tools designed to aid an observer, or on the capability of a fully automated device. The suggestion

treated here is that candidate indices be evaluated by calculating their relative operating characteristics

(ROCs). The form of an index's ROC identifies the model of the discrimination process that is implied

by the index, and that theoretical form can be compared with the form of empirical ROCs. If an

index and its model yield a grossly different form of ROC than is observed in the data, then the model

is invalid and the index will be unreliable. Most existing indices imply invalid models. A few indices

are suitable; one is recommended.

Subjects in experiments on perception, learning, memory, and

cognition are often required to make a series of fine discrimi-

nations. In a common method, a single stimulus is presented on

each trial and the subject indicates which of two similar stimuli

it is, or from which of two similar categories of stimuli it was

drawn. In addition, in several practical settings, professional

diagnosticians and prognosticators must say time and again which

of two conditions, confusable at the moment of decision, exists

or will exist. Among them are physicians, nondestructive testers,

product inspectors, process-plant supervisors, weather forecasters,

mineralogists, stockbrokers, librarians, survey researchers, and

admissions officers. There is interest in knowing both how ac-

curately the experimental subjects and professionals perform and

how accurately their various tools perform, and a dozen or more

indices of discrimination accuracy are in common use. In this

article I cover a way of discriminating among those indices that
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permits sifting the ones that are valid and reliable from the ones

that are not. This proposed touchstone for indices is the relative

(or receiver) operating characteristic (ROC).

In this article I argue that there is no model-free approach to

confusion data, and specify the models implied by several com-

mon indices. Many of the points I make may be familiar to

experimental psychologists from previous discussions of signal

detection theory, but they are generalized now to provide a theo-

retical overview of questions usually addressed heuristically, and

with uneven success. The package is presented as a useful con-

tribution to other fields and to those who have avoided the indices

of detection theory in favor of indices presumed to make fewer

or weaker assumptions.

The path of this article is not simple and quick, but the out-

come is quite manageable. A half-dozen indices imply threshold

models, which are clearly at odds with existing data. These indices

are hence subject to unnecessary unreliability (instability, im-

precision), and so, as a mnemonic device, might be given a near-

failing grade of "D." Four indices are consistent with variable-

criterion models, which are in much better agreement with the

data. However, they assume as fixed a certain parameter that the

data tell us must be free, and hence they may be given a "C."

Lastly, a few indices drawn from the class of variable-criterion

models accommodate the free parameter mentioned. They are

the best available, but because improvements might still be made,

they could be given a "B."

With the single-stimulus method, in which either Alternative

A or Alternative B is presented, analysis of data in terms of the

ROC can provide a relatively pure index of discrimination ca-

pacity, or accuracy. In particular, an ROC index may be largely

unaffected by the discriminator's criterion for choosing, say, Al-

ternative A (or, as in the terminology of the threshold models,

by the discriminator's bias toward the choice of A). Data show

that the decision criterion (or response bias) is necessarily in-

volved in the single-stimulus method, and varies both from one

person to another and within a person over time. It, and its vari-
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ation, will confound indices of accuracy unless steps are taken
to isolate it.

The ROC is a graph of the functional relation between the
proportion of times that Alternative A is chosen when it occurs
and the proportion of times that Alternative A is chosen when
Alternative B occurs—as the decision criterion or response bias
varies. In signal detection theory, the first quantity is termed the
hit rale and the second, \\KJalse-alarm rale. (Also indicating the
frequent asymmetry between Alternatives A and B are the cor-
responding terms "true-positive ratio" and "false-positive ratio")
The two quantities in question vary together from low to high
as the criterion for choosing Alternative A is made more lenient
(or the bias toward the choice of A becomes stronger)—and,
thus, for any particular degree of accuracy, an ROC curve is
traced from left to right and low to high. Figure I shows an
example implied by a particular model (discussed in the section
on Equal-variance, normal PDFs). In general, an index of dis-
crimination that specifies the locus of such a curve, rather than
a single point on it, reflects all possible decision criteria or re-
sponse biases, and hence is independent of any one (see, e.g.,
Swets, 1973).

Many accuracy indices are calculated from a single ROC point,
in disregard of the full curve that results from variation in the
decision criterion or in the response bias. However, I suggest here
that a candidate index may be evaluated by plotting the family
of ROCs that it implies. Strictly, one plots the isopleths, at various
values of the index, on the ROC graph. An isopleth, or curve
connecting points at which the index has a constant value, is the
ROC implied by the index for that value. The gist of this article
is that an index is valid, and is likely to be reliable, only if its
implied ROCs have the same form as the empirical ROCs found
for the discrimination problem (observer, task, setting) in ques-
tion.

Fine structure is added to that theme because an index's ROCs
can reveal several of its properties. They may show, for example,
that the index violates a basic measurement purpose by giving
the same value to better-than-chance and poorer-than-chance
performances. They can disclose that the index depends on factors
irrelevant to discrimination per se, not only the observer's ten-
dency to choose one or the other alternative, but also the relative
frequency of occurrence of the two alternatives. Further, ROCs
may show that two apparently different indices are practically
the same.

Principally, an index's ROCs can identify certain fundamental
assumptions that use of the index makes about the nature of the
discrimination process. In effect, they specify the model implied
by the index for that process. One example of an assumption or
model is that the representations (observations or samples) of
the alternatives on which choices are based have just a few values
(or states). The opposing assumption is that the values of rep-
resentations vary continuously over a wide range. A second ex-
ample is that certain states of the representations, bounded by
a fixed threshold, lead directly to the choice of a given alternative.
The opposing assumption is that the observer can choose which
values will lead to which choice, or can relocate a decision cri-
terion at will. A final example is that the basic statistics of the
variable representations are the same across all tasks and dis-
criminators. The opposing assumption is that those statistics can
vary in some specified manner.

figure J An illustrative ROC (relative operating characteristic), showing
the conditional probability of a hit (h) as a function of that of a false
alarm (./), as the decision criterion varies.

One might imagine that different models are appropriate for
different tasks or observers. However, the working hypothesis is
advanced here that all discrimination data will agree best with
a model that includes: (a) continuous representations of the al-
ternatives, (b) a decision criterion controlled by the observer, and
(c) a particular free parameter of the statistics of the represen-
tation values; namely, the relative variance of the distributions
of representation values that are associated with the two alter-
natives. If this hypothesis is true, then using an index that implies
another model requires specific justification, conceivably on some
pragmatic basis.

My plan is first to set forth the formal description of discrim-
ination performance in the 2 X 2 contingency table, or confusion
matrix, and to define various accuracy indices in terms of the
quantities in that table. Then I review ROC theory; I discuss
general ways of generating ROCs of various forms for the class
of continuous, variable-criterion models; the ROCs of four indices
consistent with such a model, with fixed and equal variances of
the two distributions, are presented in that context. Third, I
present the ROCs for six indices that imply one or another
threshold model and discuss these models. Fourth, I review ROC
practice; 1 point to illustrative empirical ROCs from several areas
of psychology and from other fields, shown in a companion paper
(Swets, in press), and summarize their general features. Lastly,
I point out the implications of empirical ROCs for the validity
of the various models, and review indices that are appropriate
to the form of empirical ROCs.

Formal Description of Discrimination Performance

For present purposes, the relevant data from a two-alternative,
single-stimulus discrimination task are fully contained in a
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2 X 2 contingency table (Table 1). Occurrences of the two alter-
natives are denoted by A and B and the corresponding choices
are denoted by A and B. The cell entries (a, b, c, and d) indicate
the frequencies of the four possible conjunctions of occurrence
and choice. The column sums give the frequencies of occurrences
and the row sums give the frequencies of choices. The total sample
size (JV) appears as the overall sum.

The relative frequency of a conjunction can be taken as an
estimate of thejoinl probability of its two elements: for example,
a/Nis an estimate of P(A -A). Dividing a cell frequency by its
column sum yields a ratio that is an estimate of a conditional
probability, specifically, the probability of a choice conditional
on an occurrence. For example, a/(a + c) is an estimate of
P(A \A). The latter probability and b/(b + d\ or P(A \B), contain
all of the information in the table, because the other two con-
ditional probabilities are their complements.

As I mentioned, the two probabilities just listed are the co-
ordinates of the ROC graph. Given that the two alternatives are
often the presence and absence of something (e.g., a weak spot
of light or a weak tone in an experiment on sensory capacity—
and disease, rain, or oil, in practice), the terms hit and false
alarm are often used, and I use h and/to stand for these con-
ditional probabilities. Another variable of importance is the
probability of occurrence of Alternative A ("something" or "sig-
nal"), namely (a 4- c)/N, here denoted by s.

Definitions of Various Indices

Tables 2 and 3 define illustrative indices as proposed in various
fields, first in terms of the frequencies of the 2 X 2 table (Table
1) and then in terms of the two or three main probabilities derived
from them: h, f, and (in some cases) s. The derivations of the
second definition of each index are not given here, but in general
are obtained by substitution according to equalities of the fol-
lowing sort: a/(a + c) = h, (a + c)/N = 5, a = hsN; b/(b + 4) =

f, (b + d)IN = 1 - j, and b = f( 1 - s)N. Tables 2 and 3 also
give the formulas for the ROCs that may be obtained by rear-
ranging the (second) definitions in terms of h, f, and (in some
cases) s. I examine later the forms of the ROCs specified by these
formulas.

Table 2 lists six indices that imply fixed-threshold models.
Table 3 lists four indices that are consistent with variable-criterion
models that have fixed distributional parameters, that is, equal
variances. The indices identified in this article as preferred to
either kind just mentioned are defined later, after the form of
empirical ROCs is adduced.

Consider first Table 2. The first two indices listed are forms
of "corrected hit probability." Both indices focus on h, but at-
tempt to correct it for any spurious component that may be
induced by a tendency toward false alarms, which is estimated
by/ The first index, designated Hc, subtracts/from h, and then
divides by (1 — /) to normalize the range of the corrected value
(e.g., Blackwell, 1963; Fisk & Schneider, 1984). It has been used
primarily in studies of sensory functions. The second, H'c, cor-
rects simply by subtracting / from h (e.g., Gillund & Shiffrin,
1984; Woodworth, 1938). In psychology this index is associated
primarily with studies of recognition memory, and it is also
prominent in weather forecasting (e.g., Hanssen & Kuipers, 1965)

Table 1
Formal Description of Discrimination Performance

Choice

A
B
Sum of column

frequencies

Occurrence

A B

a b
c d
a + c b + d

Sum of row
frequencies

a + b
c + d
J V = a + 6 + c + d

and medical diagnosis (e.g., Galen & Gambino, 1975; Youden,
1950).

"Percentage correct" is the name usually given the overall per-
centage of correct choices of either alternative. It is listed in Table
2 in the more convenient form of "proportion correct" (PC).
Proposed at least a century ago (Finley, 1884) to evaluate the
accuracy of tornado prediction, it is still popular in many fields,
including weather forecasting (e.g., Brier & Allen, 1952; Ramage,
1982) and medical diagnosis; in fact, in medical diagnosis, it is
often taken as synonymous with accuracy (see Metz, 1978).

A contemporary of Finley (Gilbert, 1885) pointed out the
dependency of PC on 5 and, indeed, the fact that PC could be
as high as s or (1 - s) by chance, without discrimination. Now,
in weather forecasting, indices that measure the extent to which
discrimination exceeds chance performance are generally called
skill scores. An example is given by the index designated Z
(Woodcock, 1976) listed in the table. As shown later, a higher
value of h relative to/must be achieved to attain a given value
of Z as s departs from the symmetrical .50. Several other indices
proposed in weather forecasting have been analyzed in ROC terms
by Mason (1982), including indices proposed by Heidke (1926),
Vernon (1953), Appleman (1959), Schrank (1960), Bermowitz
and Zurndorfer (1979), and Rousseau (1980).

A statistic used as a measure of observer agreement in clinical
medicine (Landis & Koch, 1977), called the kappa statistic (K),
is another form of chance-corrected counterpart to PC, and is
listed fifth in Table 2.

The final index considered in Table 2 is another measure of
association in statistics. Phi, equal to (x2/AOl/2, is called the four-
fold point coefficient and the root-mean-square contingency
(Hays, 1973). It (or its square) has been used as a discrimination
accuracy index in experimental psychology (Wellman, 1977; see
also Nelson, 1984), weather forecasting (Pickup, 1982); and non-
destructive testing (see Swets, 1983a, 1983b).

Table 3 lists four indices that have been, or can be, associated
with variable-criterion models. They are all consistent with the
assumption (as will be seen later) that the distributions of ob-
servation values stemming from the two alternatives to be dis-
criminated are of equal variance—a restrictive assumption not
supported by data.

The first index listed is the first index defined in the psycho-
logical application of signal detection theory, the detectability
index d' (Tanner & Swets, 1954). It is defined in terms of integrals
of normal (Gaussian) distributions and is given in terms of the
normal deviate, or z score; d' is the z score corresponding to/
minus the z score corresponding to h.

The next index, tj, is defined in Luce's (1959, 1963) general
theory of choice. Both it and the next measure, the log odds ratio
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Table 2
Definitions and ROC Formulas for Indices That Imply a Threshold Model

Index name and symbol Definitions and ROC formula

1. Corrected hit probability, Hc
Hc = [a/(a + c)} - [b/(b

= ( h - f ) / ( \ - f )

h = Hc+f(\ -HC)

- [b/(b + d)]]

2. Corrected hit probability, H'c ffc = (ad - bc)l(a + c)(b + d)

= h-f

3. Proportion correct, PC PC = (a + d)/N

= (1 -s)(\ -f) + sh

h = [PC-(l - s ) ( s - f ) ] / s

4. Skill test, Z Z = 4 (ad - bc)/N2

= 4s(\ -s)(h-f)

h= f+[Z/4s(\-s)]

5. Kappa statistic, K 2(ad - be)
2(ad - be) + N(b + c)

2s(l-S)(h-f]
' (1 - 2s)[hs+f(\ -s)] + s

/(I - s)[l -(1 -KX1 -2s)]
s[\ + ( 1 -/0(1 ~2s)]

6. Phi coefficient, < (ad- bc)/[(a + c)(b

[{sh + (1 - *

h= {a2 + 2(1 -

+ 0[02 + 4(1 -

- [sh + (1 -

-f)/s]t/2}/{2((\ ~

Note. ROC = relative operating characteristic. The numbers 1-6 order these equations in sequence with those presented in the text. The first two
equations for each index are different, but equivalent, definitions; the third equation is the ROC formula for thai index.

(LOR), are similar to d', but depend on logistic, rather than
normal or Gaussian, distributions (thus permitting an explicit
writing of the ROC function, as shown).

The LOR was described by Goodman (1970) and is used ex-
tensively in biostatistics (see Gart, 1971). The odds are those of
a correct choice (ad) relative to an incorrect choice (be). As the
two ROC equations show, if — e~LOR.

Lastly, the measure Q was denned by Yule (1912). For two
alternatives, Goodman and Kruskal's (1954) gamma measure is
equal to Q. It was recently proposed as an accuracy index in
psychology by Nelson (1984). Nelson contrasted PC, (see Table
2), d', and Q, and advocated Q over d' primarily on the basis
that it was thought to make weaker assumptions. As I show later,
and as Table 3 indicates by the common form of the ROC for-

mulas for 17, LOR, and Q, the latter index is also consistent with
(though it need not assume) logistic distributions in detection
theory.1

1 In treating the related indices Q, ij, and LOR (Table 3) as well as <i>
(Table 2), I essentially include almost all standard measures of association
as derived in statistical theory. Bishop, Fienberg, and Holland (1975)
point out that in 2 X 2 tables, almost all such measures reduce either to
functions of the cross-product ratio (and are independent of marginal
totals), as are Q, 17, and LOR, or to functions of the correlation coefficient
(and are sensitive to marginal totals), as is 4>. The kappa statistic (Table
2) is a measure of agreement described by Cohen (1960) as a special case
of association for larger tables, and as essentially equivalent to association
in 2 X 2 tables (again, sensitive to marginal totals).
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ROC Theory

Basic Model

The ROC graph was designed in the context of the theory of
signal detectability by Peterson, Birdsall, and Fox (1954) to pro-
vide an index of accuracy consistent with their basic model of
the detection process. They saw the detection task as one of dis-
criminating occurrences of "signal plus noise" (sn) from occur-
rences of "noise alone" (ri). Given that noise is a random variable,
the two alternatives can be considered as statistical hypotheses.

The theory of statistical decision, or of testing statistical hy-
potheses (e.g., Wald, 1950), is the basis for a model that provides
an accuracy index that is independent both of the probability of
occurrence of the two alternatives (s and 1 — s) and of the dis-
criminator's tendency to favor the choice of one or the other
alternative. Neither variable, the detection theorists suggested, is
usefully or properly regarded as part of the process of discrim-
ination per se and neither should therefore influence an index
of discrimination capacity or accuracy. Because they arc vari-
ables, an accuracy index tacitly dependent on them would be
imprecise at best. An accuracy index that incorporated an explicit
and monitored dependence on them would imply a model of the
choice process as well as of the discrimination process and would
need to be validated by data.

The detection-theory model is depicted in Figure 2. The hor-
izontal axis is akin to the decision variable of statistical theory:

Table 3
Definitions and ROC Formulas for Indices Consistent With
a Variable-Criterion Model

Index name and symbol Definitions and ROC formula

7. Detectability, d'

8. Choice-theory measure,

9. Log odds ratio, LOR

10. Yule's Q

zh = Z f - d '

rt = (bc/ad)]>2

= U/U-/01/W I-/)]}"2

h=f/(f+r,\\ -/)]

LOR = ln(ad/bc)

= ln(h(\ -/)//(! - h)]

= (ad~ bc)/(ad + be)

= (h - f ) / ( h - 2 f h + f )

Note. ROC = relative operating characteristic. The numbers 7-10 order
these equations in sequence with those presented in the text. The first
two equations for each index are different, but equivalent, definitions;
the third equation is the ROC formula for that index.

The variable x is a measure of the strength of the observation,
or the magnitude of a sample statistic. The vertical axis is prob-
ability density. The left-hand distribution is the probability den-
sity function (PDF) of x for n, analogous to the null hypothesis,
H0. The right-hand distribution is the PDF for sn, analogous to
the other hypothesis under test, H\. The degree of overlap of the
two distributions determines the confusability of the two alter-
natives, reflected in the figure by the difference between the dis-
tribution means, and denoted by 6. Thurstone (1927) called these
distributions "discriminal dispersions" in psychometric theory:
They acknowledge the idea that representations of a given alter-
native, either psychologically in perception or cognition or more
generally as samples of any kind, vary from one occurrence of
the alternative to another, and can be considered to lie along a
single dimension.2

A critical value of x, or the decision criterion (xc), separates
the values of x that lead to the choice of sn (i.e., x > xc) from
those that lead to the choice of n (i.e., x < xa). The particular
value of xc selected depends in theory on the probability s and
on the benefits and costs of the four possible choice outcomes.

The area under the sn distribution to the right of xc (hatched)
equals the probability h, and the area under the n distribution
to the right of xf (Crosshatched) equals / The ROC is traced
from left to right on the graph of h versus/as xc moves from
right to left. This graph and an illustrative ROC are shown in
Figure 1. The ROC shown in Figure 1 is that indicated by the
specific model and specific discriminability portrayed in Figure
2: namely, Gaussian or normal distributions of equal variance
separated by a particular value of 6, Larger 6s lead to ROCs that
are higher on the graph, and vice versa. Discrimination accuracy
is at the chance level when the ROC follows the positive diagonal
(the distributions overlap completely), and is perfect when the
ROC follows the left-hand and top axes (the distributions do not
overlap at all). Appropriate indices are discussed later, but note
that accuracy independent of the criterion for choice can be in-
dexed either by a theoretical parameter related to the PDFs that
might underlie an ROC, such as #, or by some other measure of
the locus of the ROC, perhaps one empirically based, such as
the proportion of the graph's area lying beneath the ROC.

ROC theory as applied in psychology is discussed in detail
elsewhere (Green & Swets, 1966/1974; Swets, 1973), and its ap-
plications in other fields have also been summarized (Swets &
Green, 1978). Note that within the framework of detection theory,
ROCs can be generated in two main ways, (a) One can assume
PDFs, on the decision variable, of one or another specific form.
As indicated previously, the PDF form determines the ROC form,
(b) One can assume some ROC form directly, without recourse
to PDFs, as specified by an algebraic formula that relates h to/
Relevant examples in each category are described next.

ROCs Generated by PDFs

Equal-variance, normal PDFs. The equal-variance, normal
PDFs of Figure 2 were the first considered in detection theory,
and represent a signal with all of its parameters (i.e., frequency,

2 Multidimensional representations can be mapped onto the single di-
mension of likelihood ratio, the ratio of the ordinate of the PDF for «i
to the ordinate of the PDF for n (Green & Swets, 1966/1974; Peterson,
Birdsall, & Fox, 1954).
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Figure 2. Detection-theory model of the discrimination process (see text), (x a measure of the strength of
the observation; «: the distribution of observations [or probability density function] that arises from the
noise-alone events; sn: same, but for the signal-plus-noise event; xf: a critical value of x; and 9: the difference
between the means of the two distributions.)

phase, amplitude, starting time, and duration) exactly known by
the observer. The corresponding accuracy index was taken as

d' (11)

which expresses the difference between the means (m) of the two
PDFs in terms of the standard deviation (square root of variance)
of the PDF for the n (or, equivalently, for the sn) alternative.
Figure 3a shows illustrative ROCs for equal-variance, normal
PDFs; as in later figures, the form of the PDFs is shown in the
inset at lower right.

Equal-variance, logistic PDFs. The logistic PDF is similar
to the normal (Gaussian) PDF (e.g., Bush, 1963; Laming, 1973),
and logistic PDFs of equal variance for n and sn yield ROCs
similar to those of equal-variance, normal PDFs (Luce, 1963).
Figure 3b shows such PDFs and illustrative ROCs. Compared
with the normal PDF, the logistic PDF is slightly taller, narrower
through the midsection, and wider at the tails. The accuracy
index shown, T\, is that denned in Luce's choice theory (Equation
8, Table 3).

As indicated, the LOR index, though denned outside of de-
tection theory and the concept of the ROC, is based on the logistic
distribution (and, in detection theory, would be derived from
equal-variance, logistic PDFs), and yields ROCs identical in form
to those of i? as shown in Figure 3b. 1 show later, when dicussing
algebraically denned ROCs, that Q, also defined without regard
to the ROC concept or underlying distributions, yields ROCs
identical to those of T\ and LOR. Their ROC formulas, as noted
in Table 3 (Equations 8-10), are of the same form. The ROCs
of the LOR and Q, with representative index values, are shown
in Figure 4.

ROCs on a binormal graph. The use of a different scale on
the axes of the ROC graph is convenient for fitting empirical

ROCs and for comparing theoretical ROCs. The scale used most
often is one on which the spacing of the probabilities is trans-
formed so that their corresponding normal deviates, or z scores,
are linearly spaced. A graph with such a scale on both axes is
called a binormal graph. On such a graph, ROCs for constant
d' are straight lines with slope of 1, as Figure 5a shows (Peterson
et al., 1954).

Logistic PDFs yield straight-line ROCs on what Birdsall (1966)
called a "lor-lor" graph, where, as with the LOR index, lor stands
for the natural logarithm of the odds ratio. However, given the
similarity of the normal and logistic ROCs apparent in Figure
3, one would suspect that logistic-based ROCs are not far from
straight lines on a binormal graph. Following Birdsall (1966),
logistic ROCs (with the values of tj shown in Figure 3) are shown
on a binormal graph in Figure 5b, where a slight bow can be
seen. Figures 3 and 5 indicate that the logistic and normal forms
of ROC could be distinguished in data only with exceptionally
reliable data, based on a large number of observations, and could
not be distinguished for most practical purposes,

Unequal-variance, normal PDFs. The early detection exper-
iments with human observers produced some ROCs like those
of Figure 3, but most were not symmetrical about the negative
diagonal; they rose more steeply from the origin and then bent
more sharply toward the upper corner. This effect at first seemed
to be more pronounced in data as the signal strength was in-
creased, that is, for progressively higher ROCs (Swets, Tanner,
& Birdsall, 1961). Such ROCs would arise from normal PDFs
having a larger variance for sn than for n, and such that the
difference in variance increased with (mm ~ mn). ROCs based
on a mean-to-sigma ratio of 4.0 (i.e., assuming [msn — mn]j
[&,„ — an] = Am/Ac = 4.0) agreed reasonably well with the early
data (Green & Swets, 1966/1974).
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Figure 3- a: relative operating characteristics (ROCs) for equal-variance, normal probability distributions, b:
ROCs for equal-variance, logistic probability distributions, (h: conditional probability of a hit;/: conditional
probability of a false alarm; n: the distribution of observations [or probability density function] that arises
from the noise-alone event; sn: same, but for the signal-plus-noise event; A and B: more general designations
of the two events; d'\ an accuracy index based on equal-variance, normal distributions; and TJ: an accuracy
index based on equal-variance, logistic distributions.)

Illustrative ROCs based on that ratio, and illustrative PDFs,
are shown on ordinary scales in Figure 6a. On a binormal graph,
ROCs with a fixed mean-to-sigma ratio are straight lines with a
progressively shallower slope as they rise on the graph, as shown
in Figure 6b. Given that such ROCs cannot be indexed by d'
(Equation 11), because d' is not constant along them, Figure 6
shows Am as an index, which was an early attempt to handle
ROCs consistent with unequal-variance, normal distributions.
The definition of Am is analogous to d',

km = (msn - mn)/aa, (12)

and can be used along with the slope of an empirical ROC in a
two-parameter description of data (Green & Swets, 1966/1974).

Other PDFs far asymmetrical ROCs. Though unequal-vari-
ance, normal (or logistic) ROCs cannot be indexed by a single
quantity unless some further assumption is made, such as that
the mean-to-sigma ratio is fixed, some other forms of PDF give
rise to ROCs similar to those of Figure 6, and can be indexed
by a quantity that is constant along a given ROC without concern
for relative variances. Some of these were defined in detection
theory as suitable for a signal having one or more parameters
(e.g., phase) known only statistically to an observer (Peterson et
al., 1954). Included are the Rayleigh PDF (Jeffress, 1964), chi-
square and noncentral chi-square PDFs (Birdsall & Lamphiear,
1960), and exponential PDFs (Green & Swets, 1966/1974).

Algebraic ROCs

Power ROC. ROCs having the general pattern of those in
Figure 6 are specified by the formula for a power function:

h =/*, where k < \ (Egan, Greenberg, & Schulman, 1961), A
few power curves are shown in Figure 7a, which indicates how
the value of k can serve as an accuracy index. The PDFs inset,
which produce power ROCs, are exponentials (Green & Swets,
1966/1974). These ROCs, of course, are straight lines on log-
log scales. Again, however, they are quite close to straight lines
on normal-normal scales, as Figure 7b shows.

Conic ROCs. Arcs of circles, ellipses, parabolas, and hyper-
bolas can serve as algebraically specified ROCs (Birdsall, 1966).
Of these, the hyperbola is singled out here, for reasons stated
next.

Algebraic ROCs and Related PDFs

As mentioned previously, exponential PDFs generate power
ROCs, though these ROCs are simply identified directly by their
algebraic formula. In the same vein, Birdsall (1966) observed
that logistic PDFs generate ROCs that are rectangular hyperbolas.
Thus, the ROC specified by the equation for a hyperbola was
shown in Figures 3b and 4a, and both jj (Equation 8) and LOR
(Equation 9) are associated with hyperbolas. Not originally de-
rived from logistic PDFs (nor dependent on them), but implying
hyperbolic ROCs, is the index Q (Equation 10). I show that LOR,
i), and Q specify hyperbolic ROCs in the Appendix.

Relation off/', 17, LOR, and Q

The indices 17, LOR, and Q are related by the following equa-
tions denning LOR and Q in terms of ij:
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Figure 4. a: relative operating characteristics (ROCs) for the log odds ratio (LOR) index, b: ROCs for Yule's
Q index, (h: conditional probability of a hit;/: conditional probability of a false alarm; A and B: distributions
of observations [or probability density functions] that arise from the two possible events; and LOR and Q:
accuracy indices that correspond in detection theory to equal-variance, logistic distributions.)
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Figure 5. a: relative operating characteristics (ROCs) for equal-variance, normal distributions on a binormal
graph, b: ROCs for equal-variance, logistic distributions on a binormal graph, (h: conditional probability of
a hit;/: conditional probability of a false alarm; z/, and zf. normal-deviate values o f h and/; d': an accuracy
index based on equal-variance, normal distributions; and 17: an accuracy index based on equal-variance,
logistic distributions.)
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Figure 6. a: relative operating characteristics (ROCs) for unequal-variance, normal probability distributions,
with a mean-to-sigma ratio of 4.0, on ordinary scales, b: the same ROCs but on a binormal graph, (h:
conditional probability of a hit;/; conditional probability of a false alarm; n (or B) and sn (or A): distributions
of observations [or probability density functions] that arise from the two events; Am; an accuracy index
based on unequal-variance, normal distributions; m: the mean of a distribution; and IT: the standard deviation
of a distribution.)
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Figure 7. a: relative operating characteristics (ROCs) for exponential distributions, in the form of a power
function, on ordinary scales, b: the same ROCs on a binormal graph. (h\ conditional probability of a hit;/:
conditional probability of a false alarm; A and B: distributions of observations [or probability density functions]
that arise from the two events; and k: an accuracy index based on exponential distributions.)
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LOR = In(\h2\ (13)
and

Q = (1 - 7,2)/(l + r,2). (14)

As developed by C. E. Metz (personal communication, 1984),

there is a one-to-one correspondence between those three indices

and the value of d' taken at the negative diagonal of the ROC

graph, termed d'e. Following Luce's (1963) derivation of

?) ss expl-(2/7

and Equations 13 and 14, we have

and
LOR

Q

(15)

(16)

(17)

These approximations can be shown to be quite good for d', <

2 and can be extended by a correction term to higher values.

They are reasonably good for a fairly substantial range of ROC

points centered at the negative diagonal; for example, they are

good to within 2% for ROC points having/values within ±.10

of its value at the negative diagonal. The need for approximate

equations stems from the nature of the definition of d', but cor-

responding values of the four indices, according to exact relations,

could be tabled. The key exact relation is

(18)

To review a bit of history, Luce (1963) showed that t) corre-

sponds to a distance between the means of logistic PDFs in signal

detection theory, via the relation y = exp[-(Am)/2], where Am

is defined as in Equation 12. The logistic function was demon-

strated to be "very similar" to the normal function (Bush, 1963,

p. 448; Laming, 1973, p. 23), differing at most by "less than two

parts in the hundred" (Luce, 1959, p. 55). The ROCs of i\ were

observed to have "substantially the same" form as those of d'

(Luce, 1963, p. 131). Ogilvie and Creelman (1968) observed that

LOR is approximately 1.64 times d'f. C. E. Metz and I. B. Mason

(independent personal communications, 1984) pointed out that

LOR and Q are transformations of?). Edwards (1963) had shown

that measures of association drawn from a 2 X 2 table that are

independent of the marginal frequencies should logically be some

function of the cross ratio, that is, if", he specifically qualified

LOR and Q (and disqualified 0, defined in Equation 6.) Birdsall

(1966) showed that logistic PDFs generate hyperbolic ROCs.

Birdsall (1966) pointed out that hyperbolic ROCs are difficult

to distinguish from the ROCs of d' in a figure reproduced here

as Figure 8a. It shows an equal-variance, normal ROC as a curve

(d' » 1.5), along with selected points from the hyperbolic ROC

that fits it best. As he put it, "If one's definition of'close' means

'as points appear when plotted on linear [scales],' then these two

[PDFs] yield ROC curves that are quite close" (1966, p. 178).

Birdsall observed, however, that as a second-order effect, 11,

LOR, and Q do diverge from d' at the edges of the plot Ordinarily,

too few observations are made to define such extreme proba-

bilities with adequate reliability, but that may not always be the

case. So let us examine some representative values of Q and d'

for values of/< . 10. Figure 8b shows Q as a function of/for

three values of d' (solid lines). Between/= .01 and. 10, the value

of Q for constant d' varies by about 4% for d' = 2.0, 17% for

d' = 1.0, and 26% for d' = 0.5. At such values of/ especially at

low index values, Q and d' cannot be used interchangeably.3

Figure 8b also helps demonstrate a point made earlier. It shows

the contour of values of/taken at the negative diagonal of the

ROC graph for various ROCs (broken line). It can be seen that

Q (and, hence, LOR and ij) vary by only a few percent from d'

over a range in/of 0.20 or more, centered about the negative

diagonal. This graph, then, supports the statement that the ap-

proximations given above for the correspondence of 17, LOR, and

Q to d'c are quite good for a fairly large range of off-diagonal

ROC points.

In summary, ROC analysis shows that the four indices have

a kinship in theory and indicates that under most conditions,

they would lead to the same conclusions in practice. Surely an

advocacy of one over another is considerably enlightened by a

comparison of their ROCs. That is particularly true for Nelson's

recent advocacy of Q for research on "feeling of knowing," in-

asmuch as researchers in that field have acknowledged the prob-

lems of the variable decision criterion (Nelson, 1984, pp. 117-

119, 121-122, 125-126).

Note also that the same or similar conclusions that would

usually be indicated by the four indices may be faulty because

of the straitjacket these indices put on the form of a ROC. For

example, consider that if the top curve of Figure 6b represented

an observed ROC, calculated values of d1 would vary by about

100% along that curve (from about 2.7 at the left to about 1.3

at the right), and would vary by about 20%-25% in a range of

/± .10 about the negative diagonal, where/= .14 (i.e., from

about 2.0 at / = .04 to about 2.5 at / = .24); all of which is

unnecessary error of measurement.

Concept of the Regular ROC

In making the transition from indices associated with the class

of continuous, variable-criterion models to those associated with

threshold models, it will be helpful to have in mind the concept

of the "regular" ROC. Almost any form of ROC can be generated

within signal detection theory: even the forms implied by thresh-

old models, as we shall see, follow from assuming rectangular

PDFs. However, what can be thought of as canonical, or classic,

detection theory contains an assumption that leads to regular

ROCs. This assumption is that any value of the observation or

decision variable can arise from either alternative (« or sn); in

other words, that noise is thoroughly noise, perturbing obser-

vation values throughout their range.

Given enough observations, this assumption implies that/=

0 will be attained only when h = 0, and that h = 1 will be

attained only when/= 1. A regular ROC is thus interior to the

unit-square ROC graph (ordinary scales) except at the chance

points (/= 0, h = 0) and (/= 1, h = 1). Nonregular ROCs are

those permitting "singular" detection, that is, ROC points having

h > 0 for/= 0 or h - 1 for/ < 1. On ordinary scales, such

31. B. Mason (personal communication, 1985) pointed out the im-
portance of the divergence of Q and d' in weather forecasting, where the
usual decision variable, posterior probability, serves to expand the left
side of the graph as compared with Figure 8b. That expanded region is
of detailed interest in that field, in which a distinction is made routinely
among posterior probabilities of 0, .02, and .05 (see, e.g., Murphy, 1977).
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Figure 8. a: comparison of a hyperbolic relative operating characteristic (ROC), as generated by equal-variance,
logistic probability distributions (open circles) and an ROC based on equal-variance, normal probability
distributions (curve). (Reproduced from Birdsall, 1966.) b: Q as a function of/for three values of d' (solid
lines) and the contour of values of/at the negative diagonal of the ROC graph (broken line). (Y: conditional
probability of a hit; X or/: conditional probability of a false alarm; Q. an accuracy index that corresponds
in detection theory to equal-variance, logistic distributions; and d': an accuracy index based on equal-variance,
normal distributions.)

ROCs will cross the left-hand axis above the lower left-hand corner
or the top axis short of the upper right-hand corner. The theo-
retical ROCs seen so far are regular; the theoretical ROCs seen
next are nonregular. Data, as I show elsewhere (Swets, in press)
and characterize here, yield regular ROCs.4

Indices Implying a Threshold Model

The six indices remaining to be considered, those in Table 2
that were anticipated to imply a threshold model, can be handled
with fewer subtleties than the four from Table 3 discussed pre-
viously. For one thing, their ROCs look very different from the
ones already discussed, so that contrast is easy. For another, be-
cause their ROCs all look very different from data, I do not go
to great lengths to compare and contrast them with each other.
One of these indices implies a high-threshold model; the other
five imply a double-threshold model.

Note first that the ROC formulas for the first five indices in
Table 2 show A as a linear function off. Hence, their ROCs will
be straight lines on ordinary scales. Thus they are nonregular.
The ROCs of the sixth index listed are nearly straight and are
also nonregular. For the most part, the models implied by these
indices assume that observation values have just two or three
states. Such models might include underlying PDFs that are
truncated or, alternatively, a threshold on the observation vari-
able, such that values on a given side of the threshold are indis-
tinguishable from each other. I present the six ROCs next, fol-
lowed by a brief characterization of the models.

Corrected Hit Probability, Hc

The ROCs for Hc, the first of two chance-corrected versions
of h, are shown in Figure 9a. They were derived by Tanner and
Swets (1954) as representing both the particular correction and
the so-called high-threshold model advocated, for example, by
Blackwell (1963). They intersect the left-hand axis and the upper
right-hand corner. Craig (1979) reported that an index used to
assess inspector accuracy in industrial monitoring also leads to
the ROC of the high-threshold model.

Corrected Hit Probability, H'c

The ROCs for H'c, the simpler chance-corrected version of h,
appear in Figure 9b. They were first drawn by Egan (See Green
& Swets, 1966/1974). They cross both the left-hand and upper
axis. Craig (1979) pointed out that the nonparametric measure
of the area beneath an ROC that is constructed by connecting

41 borrow "regular" from Birdsall (1966) who meant something slightly
more specific by it. His definition is essentially the same as Egan's (1975)
definition of a "proper" ROC. A proper ROC is based on likelihood ratio
as the decision variable (see Footnote 2). Such an ROC will have two
other properties of a regular ROC; (a) It will be complete; that is, for
each value of the horizontal axis there is one value of the vertical axis,
(b) It will be convex; that is, it will be on or above the line segments
connecting any two points the discriminator can produce. In general,
these ROCs will have a monotonically decreasing slope from the point
(0,0) to the point (I, I).
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Figure 9, a: relative operating characteristics (ROCs) for the Hc index on ordinary scales, b: ROCs for the
H'c index on ordinary scales, (h: conditional probability of a hit;/: conditional probability of a false alarm;
A and B: distributions of observations that arise from the two events; HC'. an accuracy index that implies a
high-threshold model; and H'c: an accuracy index that implies a double-threshold model.)

a single observed point and the corners (0,0) and (1,1), a special
case of the general area measure discussed by Green and Swets
(1966/1974), also leads to the theoretical ROC of the double-
threshold model.

Percentage (Proportion) Correct, PC

The ROCs for PC are shown in Figure lOa. The three values
of i included (.25, .50, .75) indicate the strong dependence of
PC on that variable. For j = .50, these ROCs have the same
form as those of //c, as Macmillan and Kaplan also showed
(1985).

In general, the slope of the ROCs for PC is (1 - $)/s. The
ROCs of different slopes rotate about their intersection with the
negative diagonal. All points along an ROC that intersects the
negative diagonal at a given point are assigned the same index
value, which is equal to the value of A at the negative diagonal.
The reader might note, for example, the broad locus of ROC
points assigned PC = .70, at the three values of s shown: thus,
at/= .40, h could be 1.0, .80, or .73; at/= .10, h could be .63,
.50, or. 10. For values of s *£ .5, some ROCs will cross the positive
diagonal, with the result that some better-than-chance perfor-
mances are given the same index value as some poorer-than-
chance performances.

Skill Test, Z

ROCs for the index Z, calculated by Mason (1982), are shown
in Figure lOb. They have the same form as those of H'c and of
PC for s = .5. As the curves for s - .70 and .30 show, Z depends
on j in that better performance in terms of h and/is required
to achieve a given index value if the probabilities of the two
alternatives differ.

Kappa Statistic, K

The use of K was suggested as a possible accuracy index by
G. Koch (personal communication, 1984), and my calculations
of its ROCs are shown in Figure 1 la. Again, slopes of 1 occur
for s = .50, and, indeed, for s = .50, K = H'c. As with PC, the
slope varies with 5. All points on the upper three ROCs yield the
same value of K (.50) and so do all points on the lower three
ROCs (.20).

Phi Coefficient, <t>

In Figure I Ib, it can be seen that ROCs for 0 (discussed by
Swets, 1983a, 1983b) share with H'c, Z, and K the intersection
of both axes other than at the corners. They differ in having a
slight curvature. Only the ROCs for s = .5 are shown; as with
PC and K, ROCs for <j> tilt away from symmetry about the negative
diagonal for other values of 5. N. Macmillan (personal com-
munication, 1985) pointed out that a nonparametric area index
based on a single observed ROC point, as proposed by Pollack
and Norman (1964), denoted A', yields ROCs that closely resem-
ble those of <t> for j = .5 (see their Figure 2 or Macmillan and
Kaplan's [ 1985] Figure 11). C. E. Metz (personal communication,
1985) observed that both of these ROCs are arcs of an ellipse.

Threshold Models

As mentioned previously, the model for Hc is a high-threshold
(two-state) model. As indicated in the inset to Figure 9a, rep-
resentations of Alternative A (distributed according to the solid
line) may fall above or below the threshold (shown as a dotted
vertical line). The threshold is "high" in that it is never exceeded
by representations of Alternative B (distributed according to the
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Figure 10. a: relative operating characteristics (ROCs) for the PC index on ordinary scales, b: ROCs for the
Z index on ordinary scales. (/?: conditional probability of a hit;/: conditional probability of a false alarm; s;
probability of occurrence of one event; A and B: distributions of observations that arise from the two events;
PC: the accuracy index that is the percentage of correct responses; and Z: an accuracy index, as defined in
the figure, used in weather forecasting.)
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Figure 11. a: relative operating characteristics (ROCs) for the kappa index on ordinary scales, b: ROCs for
the <t> index on ordinary scales, (h: conditional probability of a hit;/: conditional probability of a false alarm;
j: probability of occurrence of one event; A and B: distributions of observations that arise from the two
events; K: the accuracy index supplied by the kappa statistic; and 0: the accuracy index supplied by the phi
coefficient.)
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dashed line, slightly offset). Values above the threshold are in-

distinguishable from one another, as are values beneath it. The

value of h at threshold, that is, at/= 0, is the "true" h and is

inflated according to a chance mechanism when/> 0. That is,

the observer who desires a higher h than that given at/= 0 must

respond "Alternative A" to a random selection of values of the

decision variable x that fall beneath the threshold. One may pic-

ture such an observer in detection-theory terms as setting a de-

cision criterion somewhere beneath the threshold; the solid ver-

tical line represents a criterion set so that about one-third of the

observations beneath the threshold receive the "Alternative A"

response. Of course, the x-axis in this picture is not a continuum;

the probabilities associated with the subareas of the rectangles

can be viewed as massed at appropriate points along the x-axis.

A double-threshold model is implied by H'c, PC, Z, K, and

4>. All but <t> correspond to a three-state model: Two thresholds

define three categories of representations of the alternatives such

that the values within each category are indistinguishable (Swets,

1961). This model can be related to uniform PDFs as in Figures

9b and I Ob. Some representations, arising only from A, are above

a high threshold (dotted vertical line on right) and lead correctly

to the choice of A; others, arising only from B, are beneath a

low threshold (dotted vertical line on left) and lead correctly to

the choice of B. Representations in a third category arise from

A or B, fall between the two thresholds, lead to either choice,

and are correct or incorrect strictly by chance. In detection-

theory terms, the solid vertical line represents a decision criterion

that assigns about one-third of the indeterminate representations

to Alternative A. (Again, however, the x-axis is not a continuum.)

The model for (/> is similar, but the representations in the middle

category are distinguishable from each other to a slight degree

(see Fig, 1 Ib, inset) and thus permit slightly better than chance

behavior. The ROCs in Figures 9-11 (for-s = .5) are symmetrical

about the negative diagonal, as they would be for symmetrically

placed thresholds, and as implied by the various indices. More

detailed discussions of the models (except that of <t>) are given

by Green and Swets (1966/1974).

Empirical ROCs and Suitable Indices

Characterization of Empirical ROCs

A companion paper (Swets, in press) includes a large number

of empirical ROCs drawn from psychological experiments on

sensory capacity, memory, cognition, and learning, as well as

from other fields, including aptitude testing, polygraph lie de-

tection, weather forecasting, information retrieval, and medical

diagnosis. They strongly support the conclusions that empirical

ROCs are fitted well on a binormal graph by straight lines of

varying slope. Predominantly, the observed binormal slopes are

between 0.7 and 1.0—some a little lower (to about 0.5) or higher

(to about 1.5). The implication of the straight line is that em-

pirical ROCs are regular, as that term is denned above. The

implication of the variation in binormal slope is that a free slope

parameter is required to fit data. A corollary of the observed

variation in binormal slope is that any index defined in terms

of a single 2 X 2 table will vary along empirical ROCs that have

a different form (or different binormal slope) than the fixed form

(and binormal slope) that is assumed by the index.

Index Variation

I illustrated earlier how much d' (and, by implication, 17, LOR,

and <3) could vary along an ROC of binormal slope other than

1. Now, viewing the ROCs of threshold models on a binormal

graph shows that they can easily be distinguished from straight

lines and that their indices vary along any empirical ROC. Figure

12a shows the ROCs for the high-threshold model and the index

//c; Figure I2b shows ROCs for the double-threshold models,

corresponding to H'c and Z, and also to PC, K, and approximately

to <£ for equal-probability alternatives (s = .50); it gives index

values for H'c. None of these curves would come close to meeting

a chi-square criterion for a fit by a straight line.

The dashed lines in the figures bound the space of observed

ROCs (binormal slope of 1.5 in Figure 12a and 0.5 in 12b) and

illustrate the variation in threshold-model index values that could

be assigned to a discriminator with fixed capacity to discriminate,

that is, with fixed accuracy. The value of Hc assigned could vary

from near 0 (chance performance) to near 1.0 (perfect perfor-

mance). It varies from about 0.5 to 0.9 within a range of/s=

.20 ± . 10. Similarly, the indices H'c, Z, PC, K, and <t> could vary

considerably for fixed accuracy. In the illustration, H'c varies

from about 0.8 to 0.4 in the range of/from about .1 to .5.

The use of one of the indices considered so far appears to need

specific justification on conceptual and empirical grounds. An

article on memory by Gillund and Shiffrin (1984) provides an

example of one kind of empirical justification that might be

attempted. They reported that findings and conclusions based

on H'c were unchanged by an analysis in terms of "d1 measures"

(p. 5). The foregoing analysis suggests that such could be the

case for ROC points lying quite close to the negative diagonal of

the graph, as would result from a symmetrical decision crite-

rion—that is, one yielding equal error rates. That would probably

not be the case for a nonsymmetrical criterion, for example, one

set to yield a given value o f f , say, .05. For an ROC point along

a vertical line at that value, H'c and d' diverge considerably from

their values at the negative diagonal.

Nelson (1984) based one justification for Q on a reliability

argument; specifically, he implied that Q has a smaller error

variance for a given number of observations than either d' or an

ROC area index of the kind defined in the next section as suitable

to binormal ROCs of varying slope. However, establishing the

facts in this matter may not be simple. According to an analysis

suggested by C. E. Melz (personal communication, 1985), the

relative error for d't is smaller than that for Q up to d', ss 1.4

and Q » .8, and then is larger; in addition, the relative error for

the area index A, is always smaller than that for Q, ranging from

0.004 of the relative error for Q at Q = .01, up to 0.567 of the

relative error for Q at Q = .99.5 A fairer comparison, though, as

1

' These calculations are based on the following two equations for relative

error:
"A _ "Q Q

and

A, Q 1 4V5 1 -Q2
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Figure 12. a: relative operating characteristics (ROCs) for the high-threshold, two-state model on a binormal
graph, b: ROCs for the double-threshold, three-state model on a binormal graph, (h: conditional probability
of a hit;/: conditional probability of a false alarm; z* and zf. normal-deviate values of h and/; Hc: an
accuracy index associated with the high-threshold model; and He: an accuracy index associated with the
double-threshold model.)

Metz observed, would be of Az(which ranges from .5 to 1.0) and
d'e (which ranges from 0 to infinity) in relation to Q after they
are normalized to the range of Q from 0.0 to 1.0. Pursuing that
trail indicates that the relative error in Az is smaller than that of
Q up to Q ?w .94, and then is larger; but it must be appreciated
that certain relations involved in the derivation are accurate
(within 5%) only for Q < .90. Normalizingd'e relative to Q, given
that d't ranges from 0 to infinity, is also problematic. In total,
there seems to be no justification for Q in terms of a greater
reliability.

Suitable Indices

Figure 13 shows ROC slopes of 1 and 0.7 on a binormal graph
and indicates some quantities that may be considered in defining
indices that are reasonably appropriate for nonunit slopes. The
index Aw, defined in Equation 12, is the distance in z units from
the origin (at z/, = z/= 0) to the intersection of the ROC and the
axis at z/, = 0. Ordinarily, one reports the slope along with km
and together they serve more as an economical description of
data than as an accuracy index. The index d'e, also mentioned
earlier, equals z/- — z/, at the intersection of the ROC and the
negative diagonal. In Figure 13, the value of d't indicated is
0.6 - (-0.6) = 1.2. Green and Swets (1966/1974) showed

which, in turn, are based on the relations:

where

d'e = 2Am[slope/(l + slope)]. (19)

The quantity z(A) is the perpendicular distance, in z units,
from the origin of the graph to an ROC (Simpson & Fitter, 1973).
It had earlier been defined (with other notation) in psychology
(Schulman & Mitchell, 1966) and information retrieval (Brookes,
1968). It can be shown that

z(A) = slope(Aw)/(l + slope2)"2. (20)

For ROCs of slope = 1,

= d'e^ 2l/2z(A). (21)

The quantity z(A) has a variance that is familiar in statistics and
more tractable than that of d'f (Brookes, 1968).

1 would recommend the index called A,, which is now probably
the most widely used of the indices suitable to ROCs of varying
slope (Swets & Pickett, 1982). In terms of the quantity just de-
fined, it is the (tabled) area under the cumulative normal function
up to the normal-deviate value equal to z(A). However, At is
better thought of as the proportion of the area of the ROC graph
that lies beneath an ROC (on ordinary scales) that is assumed
to be a straight line on a binormal graph. This index runs from
.5, at the diagonal of the ROC graph representing chance per-
formance, up to 1.0 for perfect performance; that is, when an
ROC point is observed in the upper left-hand corner. Illustrations
of the use of A, are available (e.g., Swets et al., 1979).*

6 Perhaps contrary to appearances, A, does not assume normal distri-
butions, but rather any form of distribution that can be transformed
monotonically to the normal. A, and, more generally, the linear fit on a
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Figure 13. Relative operating characteristics (ROCs) of two illustrative
slopes on a binormal graph, and some quantities used to define acceptable
indices, (h: conditional probability of a hit;/: conditional probability of
a false alarm; z* and zf. normal-deviate values of A and/; Am and d',:
accuracy indices based on unequal-variance, normal distributions; and
z(A): an accuracy index defined as the perpendicular distance from the
origin of the binormal graph to the ROC.)

A computer program developed by Dorfman and Alf (1969)
and revised by Dorfman (Swets & Pickett, 1982) provides a max-
imum-likelihood fit to ROC data obtained by the rating method,
and estimates of the indices Am, d't, 2

inz(A) ~ h, and A,, along
with their variances. A listing of this program was given by Swets
and Pickett (1982), who also described the construction of ROC
curves by the rating method.

Though the linearity of empirical ROCs on a binormal graph
is a robust finding, one might prefer an index that is not param-
eterized in terms of any underlying distributions. The index here
termed PA, for "proportion of area," is the proportion of area
in the unit-square ROC graph (ordinary scales) beneath the ob-
served points when they and the (0, 0) and ( 1 , 1 ) corners are
connected by straight lines (Green & Swets, 1966/1974). Like
AZ, PA runs from .5 to 1.0. If PA is taken as the area under a
continuous curve (vs. the series of linear segments), it will, of
course, be slightly larger. This larger value can be shown to equal
the proportion of correct choices in a two-alternative, "forced-
choice" task—that is, when both Alternatives A and B are pre-
sented on each trial and the observer says which is which. This
equality holds for any and all forms of assumed PDFs (Green
& Swets 1966/1974). The area index denned as A: above, which
depends on a line fitted to the observed data points (on a binormal

binormal graph, make a particular assumption about the (observable)
functional form of the ROC, and not about the (usually unobservable)
forms of underlying distributions. A, is parameterized in terms of an
effective pair of normal distributions only as a convenient convention.

graph), has an advantage over PA determined by linear segments
(on ordinary scales) in being less dependent on the spread of the
points.

I have assumed that one can usually obtain a sufficient number
of data points (say, 4 or more) to define an ROC, and the force
of this article is that one should do that if possible. When it is
not possible, as perhaps in sensory testing of young children, the
choice would seem to be among the indices of Table 3—d', ij,
LOR, and Q—as at least being independent of the relative fre-
quencies, s, and implying a linear (or near-linear) binormal ROC.
The use of one of those indices would be supported by a finding
of nearly equal error proportions.

Summary

The two-alternative single-stimulus discrimination task ap-
pears in many guises. Several indices of discrimination accuracy
have been denned in terms of a single 2 X 2 data table. However,
a discriminator under fixed conditions, and with fixed capacity
or accuracy, can (and usually will) generate other 2 X 2 data
tables that, for each of these indices, lead to different values.
Similarly, two discriminators in a given setting having the same
intrinsic accuracy may produce different tables, and different
values on each index; in addition, two discriminators with un-
equal accuracies may produce the same table, and the same value
on each index. The source of this variation is variation in the
decision criterion used for choosing one alternative over the other,
which the discriminator can usually select at will, and is inde-
pendent of discrimination capacity. In short, indices defined in
terms of a single 2 X 2 table confound discrimination capacity
and decision criterion. Hence, investigators should use an index
of this sort only when a very rough estimate of accuracy is ad-
equate for the measurement problem in question.

On considering such an index, one can be informed in several
ways by the ROCs that it implies. The ROC is a graph that shows
how the 2 X 2 data tables can vary for any constant value of an
index. It can reveal an index's violation of basic measurement
purpose, such as giving the same value to performances of ob-
viously different accuracies, for example, performances better
and poorer than chance. It can point out that an index depends,
inappropriately, on the relative frequencies of the two alternatives.
It can disclose that two apparently different indices lead to the
same result. Primarily, the ROC will reveal what an index has
laid on as assumptions about the discrimination process, to the
point of specifying the index's general model of the process.

Several representative indices I examined imply threshold
models and produce what are denned as nonregular ROCs, and
are thus inconsistent with available data, which show regular
ROCs across a wide variety of discrimination tasks and settings.
Other representative indices imply variable-criterion models and
produce regular ROCs, but ROCs that are fixed across all con-
ditions whereas empirical ROCs vary in a particular way. In
general, discrimination accuracy is most reliably determined
when several different 2 x 2 data tables are collected—or, better,
one 2 X r table based on r confidence ratings—so that a full
ROC is obtained, and so that an index can be calculated that
depends on the locus of the full, measured ROC. Such an index
is not confounded by the decision criterion, nor by the relative
frequency of the two alternatives. It is consistent with the fun-
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damental properties of the discrimination process, and accom-
modates the particular variation in ROCs that occurs across ob-
servers, tasks, and settings.
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Appendix

Hyperbolic Form of ROCs for Three Indices

The ROCs associated with the indices ij, Q, and LOR, and with equal-
variance logistic PDFs in detection theory, are demonstrated here to be
hyperbolas, according to a proof by C. E. Metz (personal communication,
1984).

The common functional form of these ROCs (as shown in Table 3) is

' x + c(\ -x) c+(\-c)x'

where c is a nonnegative constant (<1) specifying the ROC; a smaller c
implies a higher ROC, These ROCs have maximum slope, 1/c, at (0, 0)
and minimum slope, c, at (1, 1).

If the coordinates are shifted from the x, y system to a u, v system
having the center of the hyperbola at its origin, in particular, such that

c 1
u = x + and D = y ,

I - c I - c

so that the origin of the u, v system is to the left of and

above the (0, 1) point in the x, y system, then

x = u and y ~ v H .
1 ~ c 1-c

Hence, in the u, v coordinates, the equation of the ROC curve is:

1 -c

or, after rearrangement,

(1 - c)u '

Thus, the curve is hyperbolic, and, in particular, is a rectangular hyperbola
with the u, c axes as asymptotes.
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