
1

1.1. Writing to the Tab Delimited .gazedata File in EET 3.1
Summary:
E-Prime provides extensive capabilities for collecting, reporting, and viewing data. In most designs, E-
Prime is used to collect and output one data row per trial. In eye tracking experiments, the goal is to
collect and output data for every eye gaze sample (of which there may be several hundred to
thousands per trial depending on the trial duration). Because of this, EET paradigms are enabled to
employ an additional data collection and output technique which results in the creation of a Tab
Delimited text file. This file contains data rows which are a combination of eye gaze data received by
E-Prime from the Tobii Pro Eye Tracker and any additional data added by the user via E-Prime.

The type and amount of data you choose to collect is determined by your experimental design and
analysis choices. To allow maximum flexibility, the methods are performed in script sections of the
experiment (as opposed to PackageCalls) to expose both the content and the format of output files to
manipulation by the user.

NOTE: The following tasks can be performed in any EET 3.1 experiment where a .gazedata file is
needed since the User Script and SaveGazeData InLine is written generically. However, you can also
use and modify the experiment file attached to SaveGazeData in E-Prime Extensions for Tobii Pro
3.1.

Overview of Tasks:

• Open the experiment you wish to add gaze data to.

• Declare a Global User Defined Data Type and name it UserEyeGazeDataType.

• Add a new member to the end of the UserEyeGazeData Type data structure.

• Edit the script to append a tab character and new column label.

• Append an ebTab line for the UserEyeGazeDataType.

• Create the SaveGazeData InLine.

• Modify the SaveGazeData InLine to use the HitTest method to track AOIs.

• Verify the overall experiment structure and run the experiment.

• Open the .gazedata file.

• Familiarize yourself with the basic structure of the .gazedata file.

• Open the .gazedata file for TETFixedPositionAOI to verify the data written to the file.

• Look at the specific sections of script from the SaveGazeData InLine and the
TETFixedPositionAOI UserScript side by side with the columns of the .gazedata file the script
created.

• Learn how the .gazedata file is created.

Recommended readings:
Before beginning the E-Prime Extensions for Tobii Pro Tutorial, we recommend that you have read
the information we offer on scripting:

Article 23286: Extending Experiments with Script
Article 22869: Getting Started with Writing Script
Article 22879: User Script Window
Article 22710: InLine Object

Estimated Tutorial Time:
15-20 minutes

http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB28886
http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB28886
http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB23286
http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB22869
http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB22879
http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB22710

2

NOTE: The typical E-Prime data file (.edat3) generated by your experiment is always available
to you (unless you take steps to specify otherwise). For most eye tracking studies, the output
file described in this section is the data most used in your data analysis (as opposed to the
.edat3 file). It is up to the experimenter to specify the column ordering of this output file and to
verify that the correct data is available for the analysis which the experimenter expects to
perform on the data.

NOTE: What data should you collect in your .gazedata file? As you will see, the starting design
material provided includes the typical non-paradigm specific data you are likely to collect. It does
not, however, include paradigm specific data which might be critical to your study. The
subsequent tasks show you how to add this additional data. During this tutorial, script is added to
the experiment that manipulates the format of the output file. Additionally, the HitTest method to
discern the Areas of Interest (AOI) we are tracking in the experiment is discussed. AOIs are
defined areas on the screen which represent critical objects or regions. AOIs are typically used
in analysis or active runtime processing in E-Prime.

3

Task 1: Add the TETOpenGazeDataFile PackageCall to Create and
Open the Tab Delimited .gazedata File
Add a PackageCall to the SessionProc that opens the .gazedata file.

The TETOpenGazeDataFile PackageCall needs to be added to an experiment to open the Tab
Delimited .gazedata file that is created (in addition to the .edat3 file) once an experiment has
completed.

1) Drag the shortcut TETOpenGazeDataFile object from the Tobii Pro Toolbox and drop it where
you want the .gazedata file opened (typically the SessionProc after Calibration).

4

Task 2: Add the TETCloseGazeDataFile PackageCall to End Data
Collection
Add a PackageCall at the end of the SessionProc that closes the. gazedata file.

At the end of the experiment, TETCloseGazeDataFile needs added to close the .gazedata file that
was previously opened. This must occur whenever you are no longer saving any new .gazedata
values in the file.

1) Drag the shortcut TETCloseGazeDataFile object from the Tobii Pro Toolbox and drop it after

the Goodbye Object in the SessionProc.

5

Task 3: Copy the TETUserScript.txt into the E-Prime User Script
Open the TETUserScript.txt file, copy the contents, and paste them into the User
Script tab in E-Studio.

The UserEyeGazeData Type data structure is used to keep track of information specific to E-Prime
conditional data per eye gaze observation. You may use it to help you to track and log any additional
experiment related data that you need to associate with the gaze data. The quick and efficient way to
get started is to copy the entire contents of the TETUserScript.txt included in
SaveGazeData in E-Prime Extensions for Tobii Pro 3.1 and paste it into the User Script window.

The script provided in TETUserScript.txt and TETFixedPositionAOISave
GazeData.txt can be copied to every experiment that you create. They were written to be exported
easily and contain commonly used variables. For each new experiment you create, you may need to
alter some of the variables to be specific to that experiment.

1) Double click the TETUserScript.txt file to open the file in your default text editor application

(e.g., Notepad).

2) Select the Edit > Select All (Ctrl+A) to highlight the contents of the file.

3) Select Edit > Copy (Ctrl+C) to copy the contents of the file.

http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB28886

6

4) Open the User Script window (Alt+7 to open) in E-Studio.

5) Paste the contents of the file into the User Script and then save the experiment file.

7

Task 4: Understanding the UserEyeGazeData Type
Examine the User Script.

The UserEyeGazeData Type is used to store any experimental data from E-Prime that is to be
associated with the Tobii Pro eye gaze data in analysis. E-Prime provides access to a wealth of
experimental and contextual data. Anything related to experimental design, stimulus presentation,
user responses, timing audit results, and user calculated data can be captured and contextualized
with eye gaze data. For example, if your experiment is displaying an image on a colored background,
you may wish to log the color of the background. For a full range of options available to you, please
refer to:

E-Prime Command Reference

Before proceeding, become familiar with the script you just pasted into the User Script window. The
variables provided represent typical data collected in most studies. For readability, we recommend
any additional User values be defined at the bottom of the Type structure. The order is not important
if it is consistent ordering throughout the steps which follow. In some designs it may not be necessary
to log the Prime, or the RT, etc. If you have determined that you do not need them in analysis, you
may remove the values that are not necessary to your data file (so long as you make sure to delete
them in the next two steps).

1) Locate the Type UserEyeGazeData in the User Script (Line 11).

NOTE: The numbers located to the left of the script window tell you what line you are at in the script.
You can use this to find specific places within the script. For example, Type UserEyeGazeData is
located at Line 11.

http://www.pstnet.com/ecr/index.htm?&KeyWord=ECR&VersionMajor=3&VersionMinor=0&VersionInternal=3&VersionBuild=60&VersionPatch=&ServicePack=0&SerialNumber=8B9-CB7DC48-684DC484&Professional=1#t=Welcome_files%2F_K_Welcome_to_the_E_Basic_Language_Reference_Guide.htm

8

Task 5: Add a New Member to the End of the UserEyeGazeData Type
Edit the script at the end of the UserEyeGazeData Type and declare the variable BackColor as a
string.

In this step, you will add the background color of the slide as a variable related to the context of the
stimulus presentation. E-Prime determines the value for this variable and associates it with every eye
gaze sample acquired while an instance of the slide was being presented.

1) Position your cursor after the g on the line that reads “RT As Long” (Line 21). Press Enter.

2) Type “BackColor As String” (Line 22).

9

Task 6: Edit User Script to Append a Column for the BackColor
Variable
Edit the script labeled ‘Create columns to append additional user defined data to label the BackColor
column.

To add a column to the .gazedata file for the BackColor variable, you need to add a line for each of
the new data values you created in the previous step. This can be done in a section of the script
labeled “Create columns to append additional user defined data.” The ebTab command is a constant
that is used to create columns in the data file by creating a tab. Using the proper syntax, you can list
the name of the variables you want to create columns for. For readability purposes, keep the order
consistent.

1) Locate 'Create columns to append additional user defined data in the ebTab group in the User

Script (Line 90).

2) Position your cursor after the _ (underscore) on the line that reads “RT”, _ (Line 102).

3) Press Enter.

4) Type “BackColor”, _” (Line 103).

10

Task 7: Edit User Script to Append Value of BackColor
Edit the script labeled ‘Append eye tracking data to user defined columns in the UserEyeGazeData
Group to include the value of the BackColor variable to the data file.

You need to add an ebTab line in theUserEyeGazeData group for each of the new data values you
created in the previous step. This uses the SaveGazeData InLine (that is created in a future step) to
populate the values in the .gazedata file. The order of the variables is very important and needs to
match the order of the columns from the previous step, as the ebTab command is only able to
populate the cells in the order that it is given. The order of the columns listed in the “Create columns
to append additional user defined data” section and the order of the variables in the “Append eye
tracking data to user defined columns” need to correspond so the data lines up properly. This ensures
that the correct data is populated under the correct column.

1) Locate ' Append eye tracking data to user defined columns near the end of the User Script (Line

166).

2) Position your cursor after the _ (underscore) on the line that reads theUserEyeGazeData.RT , _
(Line 181). Press Enter.

3) Type theUserEyeGazeData.BackColor , _ (Line 182).

11

Task 8: Add an InLine Object to the TrialProc
Add an InLine Object to the TrialProc and rename it to SaveGazeData.

The SaveGazeData InLine Object is used to collect the eye tracking data and works in conjunction
with the User Script to write the data to a tab delimited .gazedata file. The .gazedata file can be
viewed via Excel, or a similar spreadsheet application. The first step in creating the SaveGazeData
InLine is to add an InLine Object to the experiment after you have stopped collecting eye tracking
data. In this experiment, the InLine should follow the TETStopTracking PackageCall.

NOTE: The script provided in TETUserScript.txt and TETSaveGazeData.txt can be copied to every
EET 3.1 experiment that you create. They were written to be exported easily and contain commonly
used variables. For each new experiment you create, you may need to alter some of the variables or
script to be specific to that experiment.

1) Drag a new InLine Object from the E-Prime Toolbox and drop it where you want the gaze data

saved (typically after the TETStopTracking PackageCall).

2) Rename (F2) the object to SaveGazeData. Press Enter to accept the change.

3) Double click SaveGazeData to open it in the workspace.

NOTE: In EET 3.2., the PackageCall TETGazeDataSave needs to be placed after TETGazeReplay.
In EET 3.1, the SaveGazeData InLine can occur before TETGazeReplay occurs.

12

Task 9: Copy Script from TETSaveGazeData.txt to SaveGazeData
InLine
Open the TETSaveGazeData.txt file, copy the contents, and paste them into the
SaveGazeData InLine in E-Studio.

Creating the .gazedata file varies greatly from experiment to experiment depending on what
experimental variables you want to include with each gaze data sample. The quick and efficient way
to get started is to copy the entire contents of the TETUserScript.txt included in
SaveGazeData in E-Prime Extensions for Tobii Pro 3.1 and paste it into the SaveGazeData InLine
object.

1) Double click the TETSaveGazeData.txt file to open the file.

2) Select the Edit > Select All (Ctrl+A) to highlight the contents of the file. Edit > Copy (Ctrl+C) to

copy the contents of the file.

http://www.pstnet.com/scripts/common/keyword/?KeyWord=KB28886

13

3) Open SaveGazeData in E-Studio, select Edit > Paste (Ctrl+V) to paste the contents of the file in
E-Studio.

14

Task 10: View and Edit the SaveGazeData InLine
View the content that you just pasted into the SaveGazeData InLine and confirm theSlide is
referencing the correct Slide Object.

The contents of SaveGazeData need modified once they are pasted into the InLine Object. The script
that was copied in the previous steps was not paradigm specific, so it could be imported into other
experiments. For each new experiment you need to check that the variables are set correctly. The
first variable we need to check is the Slide variable. This variable needs to correspond to the object
that displays your critical stimulus. In this experiment, the critical stimulus (i.e., the Slide named
Stimulus) is the object that displays the images to the left and right visual fields.

1) Confirm Set theSlide = CSlide (Rte.Getobject("Stimulus"))

2) Position your cursor at the end of the line that reads “theUserEyeGazeData.RT = theSlide.RT”.

3) Press Enter. Type 'Logs the background color.

NOTE: It is important to start the line with a single quote; this indicates that the characters which
follow the quote are a comment and not E-Basic script.

4) Press Enter. Type theUserEyeGazeData. BackColor = theState.BackColor

The background color of the Slide Object will now be written out to the .gazedata file.

15

Task 11: Understand theUserEyeGazeData Type Variable Equivalents
Understand how the variables in theUserEyeGazeData type correspond to other objects in the
experiment.

The next section of script reviews the variables that are used to assign a unique ID to the trial and
collect other information about the trial. AOI is defined as an Area of Interest. Look over the variable
descriptions below to get a basic understanding of how they function in the script. This differs
experiment to experiment depending on the variable names and the data that is being saved in the
.gazedata file.

NOTE: The methods employed in the SaveGazeData InLine are not designed to be executed when
E-Prime is performing tasks related to data collection and stimulus presentation. In most experimental
designs this is performed between trials. In this tutorial, samples from the eye tracker are stored in
memory until the end of the trial, at which point this script is executed.

Once the trial is over, the SaveGazeData InLine processes all the eye gaze data collected since
TET_StartTracking was called. The SaveGazeData InLine then performs any
calculations required to fill the variables pertaining to the current trial. This is accomplished by a loop
that runs through each of the acquired .gazedata points and logs the appropriate E-Prime related
data.

1) theUserEyeGazeData.TrialId: Obtains the sequential sample number from the currently running

list.

2) theUserEyeGazeData.Prime: Logs the properties associated with the Prime Attribute.

3) theUserEyeGazeData.AOI1: Sets AOI1 to Attribute LeftImage in the TrialList.

4) theUserEyeGazeData.AOI2: Sets AOI2 to the Attribute RightImage in the TrialList.

16

5) theUserEyeGazeData.AOI: Creates AOI variable to hold the value of the current AOI. This is set

in the script “Determine which E-Prime object was running when this sample was taken”.

6) theUserEyeGazeData.AOIStimulus: Creates AOIStimulus variable to hold the string that is a text
description of the current AOI. This is set in the script “Determine which object is being viewed if
the critical stimulus is on screen.

17

Task 12: Determining the objects on Screen during each Gaze Data
Sample
Use the .OnsetTime property to log the time at which the object was placed on the screen.

The screen image below shows how E-Basic script associates eye tracking data with the E-Prime
object that is currently displayed on the screen. The RTTime property of the data structure named
theGazeData provides a timestamp of when the current .gazedata point was delivered to E-Prime.
This value is then compared to the time at which each object in the TrialProc began to execute to
determine which object was being displayed when the .gazedata point was recorded.

The SaveGazeData InLine Object contains script which first loops through all the objects in the
TrialProc up to the Feedback Object and retrieves their OnsetTime property. The script shown below
shows the comparison of this value to the RTTime.

Both sections of script are written generically: if you add, remove, or rename any object on the
TrialProc, up to the Feedback Object, this script still operates as intended. You do not need to modify
any of this script even if you modify the objects on the TrialProc.

1) Compare the eye gaze data time (theGazeData.RTTime) to the object’s onset time

(arrOnsets(nobject))”.

18

Task 13: Declare AOIs as Slide Sub-Objects
Associate Area of Interest (AOI) objects with eye gaze data.

Recall that we previously defined an Area of Interest (AOIs) as areas on the screen which represent
critical objects or regions. AOIs are typically used to assist in analysis or in active runtime processing
in E-Prime. Now we need to populate the AOI columns we declared in the User Script with data. In an
earlier task (Task 10: View and Edit the SaveGazeData InLine) we defined the critical stimulus as the
Stimulus Object. The Stimulus Object contains three Sub-Objects; Fixation, AOI1, and AOI2.

We have already associated the AOI1 label to the images presented on the left side of the screen and
the AOI2 label to the images presented on the right side of the screen in the script when the
experiment was originally created.

1) Select AOI1. When AOI1 is selected from the dropdown list, the image associated with the name,

AOI1, becomes indicated with gray boxes.

19

Task 14: The HitTest Method
Use the HitTest Method to determine which Sub-Object a given .gazedata point is within.

The HitTest Method determines the on-screen location of the cursor or mouse pointer on a Slide
Object by using the X and Y coordinates. The .gazedata point can be recorded with this method by
substituting the .CursorX and .CursorY. This allows you to determine if the current point was within
the given Sub-Object by referencing the name of the Slide Sub-Object, e.g., AOI1, AOI2, Fixation.
The “Else” case logs a null value for the AOI if the given .gazedata point is not within any of the AOIs.
You need to add to the script below to include any of the possible AOIs which you present in addition
to removing the AOIs that do not exist in your experiment.

1) Command line that executes HitTest.

2) Case “AOI1”: Defines the criteria for the 1st AOI.

Assigns the current AOI to 1 and populates AOIStimulus with a text description of AOI1.

3) Case “AOI2”: Defines the criteria for the 2nd AOI.
Assigns the current AOI to 2 and populates AOIStimulus with a text description of AOI2.

4) Case “Fixation”: Defines the criteria for the Fixation condition.
Assigns the current AOI to Fixation and populates AOIStimulus with the text “Fixation”.

5) Case “Else”: Defines the criteria for the AOI null condition.
Assigns the current AOI to an empty string and populates AOIStimulus with an empty string
(makes it blank.)

20

Task 15: Run the Experiment
Run the experiment to verify that the eye tracker is working and to ensure the .gazedata file is written.

Now you can run the experiment to generate a .gazedata file.

1) Click the Run icon on the toolbar to generate and run the experiment locally.

2) Press Enter to accept the default values for each of the initialization prompts presented.

3) Follow the prompts on screen to complete the calibration sequence.

4) Accept the calibration and perform the experiment.

5) Observe the stimulus presentation sequence to verify the experiment is functioning correctly

and completes with no errors being generated.

21

Task 16: Open the Eye .gazedata File
Verify the .gazedata file exists and can be opened.

The .gazedata file contains information about the stimulus presentation (e.g., what was on screen and
when it was on screen, the eye tracking data, where the eyes were looking). This file facilitates data
analysis. After the experiment is created, it is important that you check this file thoroughly to make
sure all the components you need for your data analysis are included in the file before you begin
running study participants. In this tutorial, you simply verify that the file exists and can be opened. In
the next tutorial, we explain the gazedata output in detail. A filename is created in the form of
DataFile.BaseName. DataFile.BaseName defaults to [ExperimentName]-[Subject#]-[Session#]. In this
example the file is named TETFixedPositionAOI-1-1.gazedata (where Subject = 1, Session = 1).

1) Navigate to your experiment folder.

2) Right click the TETFixedPositionAOI-1-1.gazedata file. Select Open With > Microsoft Office

Excel. If prompted, accept all defaults. Click Finish.

NOTE: The file name varies depending on what subject number and session number you chose to
run the experiment under.

3) Verify that the file opens and looks like the image below.

22

Task 17: Introduction to .gazedata File
Understand the general output from the .gazedata file.

The .gazedata file contains information about eye movements from the Tobii Pro Eye Tracker and
information about the stimulus presentation from E-Prime. The data consists of general information
regarding the eye gaze data that is continuously collected as well as user-defined data. This data is
compiled in one file to make analysis easier. The table below summarizes the general information
included in the .gazedata file. User-defined data will be discussed later in this tutorial. Take some
time to familiarize yourself with the basic output and the information that it provides. This way you can
determine what you need to add to the data file in the way of user defined columns.

.gazedata File

Column Definition
Subject The Subject number (from E-Prime Startup Info).

Session The Session number (from E-Prime Startup Info).

ID The counter of the current numbered .gazedata point acquired.

RTTime
The timestamp value based on E-Prime's clock. Returns the time stamp of when
it currently is in the experiment.

RTTimeReceived The E-Prime time when the application received the eye tracker packet.

CursorX
The X axis pixel location across all displays that corresponds to where the gaze
is located on the screen and accounts for screen resolution (width).

CursorY
The Y axis pixel location across all displays that corresponds to where the gaze
is located on the screen and accounts for screen resolution (height).

HardwareTimestamp
The complete device timestamp provided within the eye tracker sample (reported
in microseconds).

HostTimestamp
The eye tracker system time when the application receives the gaze data
(reported in microseconds).

SystemTimestamp
The complete system timestamp provided within the eye tracker sample
(reported in microseconds).

SEQ The sequence of the response within the InputMask.

SEQH The sequence of the response provided by the InputHistoryManager.

SEQD The sequence of the response provided by the device

GazePointValidityLeftEye The validity of the left eye gaze point data.

GazePointPositionDisplayXLeftEye
The horizontal position (X) of the left eye gaze point on the active display (0, 0 is
the upper left corner and 1, 1 is the lower right corner).

GazePointPositionDisplayYLeftEye
The vertical position (Y) of the left eye gaze point on the display (0, 0 is the
upper left corner and 1, 1 is the lower right corner).

GazePointValidityRightEye The validity of the right eye gaze point data.

GazePointPositionDisplayXRightEye
The horizontal position (X) of the right eye gaze point on the display (0, 0 is the
upper left corner and 1, 1 is the lower right corner).

GazePointPositionDisplayYRightEye
The vertical position (Y) of the right eye gaze point on the display (0, 0 is the
upper left corner and 1, 1 is the lower right corner).

GazePointPositionUserXLeftEye
The horizontal gaze point position (X) in the user coordinate system for the left
eye (the x-axis points horizontally towards the user’s right).

GazePointPositionUserYLeftEye
The vertical gaze point position (Y) in the user coordinate system for the left eye
(the y-axis points vertically towards the ceiling).

GazePointPositionUserZLeftEye
The gaze point position from the user to the eye tracker (Z) in the user
coordinate system for the left eye (the z-axis points towards the user).

GazePointPositionUserXRightEye
The horizontal gaze point position (X) in the user coordinate system for the right
eye (the x-axis points horizontally towards the user’s right).

23

 .gazedata File continued

Column Definition

GazePointPositionUserYRightEye
The vertical gaze point position (Y) in the user coordinate system for the right
eye (the y-axis points vertically towards the ceiling).

GazePointPositionUserZRightEye
The gaze point position from the user to the eye tracker (Z) in the user
coordinate system for the right eye (the z-axis points towards the user).

GazeOriginValidityLeftEye The validity of the left eye gaze origin data.

GazeOriginPositionUserXLeftEye
The horizontal gaze origin position (X) in the user coordinate system for the left
eye (the x-axis points horizontally towards the user’s right).

GazeOriginPositionUserYLeftEye
The vertical gaze origin position (Y) in the user coordinate system for the left eye
(the y-axis points vertically towards the ceiling).

GazeOriginPositionUserZLeftEye
The gaze origin position from the user to the eye tracker (Z) in the user
coordinate system for the left eye (the z-axis points towards the user).

GazeOriginValidityRightEye The validity of the right eye gaze origin data.

GazeOriginPositionUserXRightEye
The horizontal gaze origin position (X) in the user coordinate system for the right
eye (the x-axis points horizontally towards the user’s right).

GazeOriginPositionUserYRightEye
The vertical gaze origin position (Y) in the user coordinate system for the right
eye (the y-axis points vertically towards the ceiling).

GazeOriginPositionUserZRightEye
The gaze origin position from the user to the eye tracker (Z) in the user
coordinate system for the right eye (the z-axis points towards the user).

GazeOriginPositionTrackBoxXLeftEye
The horizontal normalized gaze origin position (X) in the track box coordinate
system for the left eye (the x-axis points horizontally towards the user’s left).

GazeOriginPositionTrackBoxYLeftEye
The vertical normalized gaze origin position (Y) in the track box coordinate
system for the left eye (the y-axis points vertically towards the ground).

GazeOriginPositionTrackBoxZLeftEye
The normalized gaze origin position from the user to the eye tracker (Z) in the
track box coordinate system for the left eye (the z-axis points towards the user).

GazeOriginPositionTrackBoxXRightEye
The horizontal normalized gaze origin position (X) in the track box coordinate
system for the right eye (the x-axis points horizontally towards the user’s left).

GazeOriginPositionTrackBoxYRightEye
The vertical normalized gaze origin position (Y) in the track box coordinate
system for the right eye (the y-axis points vertically towards ground).

GazeOriginPositionTrackBoxZRightEye
The normalized gaze origin position from the user to the eye tracker (Z) in the
track box coordinate system for the right eye (the z-axis points towards the user).

For further information on the different coordinate systems used in gathering data for .gazedata files, please

refer to:

Coordinate System in Tobii Eye Tracking

http://developer.tobiipro.com/commonconcepts/coordinatesystems.html

24

Task 18: Validity Ratings
Familiarize yourself with the validity ratings for the .gazedata output.

The rows corresponding to the columns listed on the previous page contain the values of the output
data. In some cases, the values need no explanation because they are timestamps or millimeters. In
other cases, the data values are single digit numbers. When this is the case it is necessary to know
the meaning assigned to the numeric value. The table below defines the meaning of the number.

Validity Ratings

0
0 indicates that valid data was not recorded on this sample and eye. The corresponding gaze data
has values of -1 that indicate a valid observation was not made.

1
1 indicates that valid data was observed for this sample and eye. The corresponding gaze data
has appropriate values (e.g., 0.222436338) and -1 is not reported.

25

Task 19: Examine the Structure and Content of the File
View the User-defined variables in the .gazedata file

Data is collected at the rate of your Tobii Pro Eye Tracker Device. When a sample is timestamped, a
row is written to the .gazedata file populating the columns. The next steps in the tutorial explains the
user defined columns in the .gazedata file and highlights the script used to create them. If you do not
have the .gazedata file open, see Task 16: Open the Eye .gazedata File, for instructions on how to
navigate to and open the .gazedata file.

1) TrialID Column: Script used to create assign variable. (location: SaveGazeData InLine):

theUserEyeGazeData.TrialId = c.GetAttrib(c.GetAttrib (“Running”) & “.Sample”)

Purpose: Unique identifier used to keep track of the trial number.

2) The TrialID column increases for each trial. The trial is labeled 1.

3) Prime Column: Script used to assign variable. (location: SaveGazeData InLine):
theUserEyeGazeData.Prime = c.GetAttrib(“Prime”)
Purpose: Logs properties associated with Prime.

4) The Prime column shows what sound file was played when the Prime Object was on screen.
The Prime was cow.

5) AOI1 Column: Script used to assign variable. (location: SaveGazeData InLine):

26

theUserEyeGazeData.AOI1 = c.GetAttrib(“LeftImage”)
Purpose: Sets the LeftImage Attribute (TrialList) as AOI1.

6) The AOI1 is assigned the LeftImage attribute from the TrialList. The AOI1 column shows what
image was displayed on the left side of the screen on a trial by trial basis. In this example, the
LeftImage is a horse.

7) AOI2 Column: Script used to assign variable. (location: SaveGazeData InLine):
theUserEyeGazeData.AOI2 = c.GetAttrib(“RightImage”)
Purpose: Sets the RightImage Attribute (TrialList) as AOI2.

8) The AOI2 is assigned the RightImage attribute from the TrialList. The AOI2 column shows
what image was displayed on the right side of the screen on a trial by trial basis. In this example,
the RightImage is a cow.

27

Task 20: Understand the AOI and AOIStimulus Variables
Learn how the AOI and AOIStimulus variables are created and what their purpose is.

The AOI and AOIStimulus variables are special variables that hold information about what was on
screen at a certain point in time. This information is determined in the SaveGazeData InLine within
the experiment. The first image below shows the variables that indicate which AOI the participant is
currently viewing, and the name corresponding to that AOI. Then the script goes on to determine
which case is true (discussed on next page).

1) The variables that indicate which AOI the participant is currently viewing, and the name

corresponding to that AOI.

2) AOI Column: Script used to create variable. (location: SaveGazeData InLine):
theUserEyeGazeData.AOI = “”
Purpose: Creates AOI variable to hold the value of the AOI the participant is currently viewing.

3) AOI Stimulus Column: Script used to create variable (location: SaveGazeData InLine):
theUserEyeGazeData.AOIStimulus = “”
Purpose: Creates AOIStimulus variable to hold the string that is a text description of the current
AOI.

28

4) Case “AOI1” is executed when the hit test coordinates correspond with the location of the

Stimulus Slide Sub-Object named AOI1.

5) Case “AOI2” is executed when the hit test coordinates correspond with the location of the

Stimulus Slide Sub-Object named AOI2.

6) Case “Fixation” is executed when the hit test coordinates correspond with the location of the

Stimulus Slide Sub-Object named Fixation.

7) Case Else is executed when the hit test coordinates correspond with a location within the

Stimulus Slide that does not have any Sub-Object associated with it.

29

Task 21: Understand the Remaining Variables in the .gazedata File
Learn how the remaining variables in the .gazedata file are created and what their purpose is.

The variables CRESP, RESP, ACC, and RT tell us information about accuracy, the response made,

and reaction time. This is important information to have when doing the analysis.

1) CRESP Column: Script used to create variable. (location: SaveGazeData InLine):
theUserEyeGazeData.CRESP = Stimulus.CRESP
Purpose: Records correct response to Stimulus Object for the trial.

2) RESP Column: Script used to create variable. (location: SaveGazeData InLine):
theUserEyeGazeData.RESP = Stimulus.RESP
Purpose: Records correct response to Stimulus Object for the trial.

3) ACC Column: Script used to create variable. (location: SaveGazeData InLine):
theUserEyeGazeData.ACC = Stimulus.ACC
Purpose: Scores accuracy of response to Stimulus Object for the trial.

4) RT Column: Script used to create variable. (location: SaveGazeData InLine):
theUserEyeGazeData.RT = Stimulus.RT
Purpose: Records time of response to Stimulus Object for the trial.

5) Currentobject Column: Script used to create variable. (location: SaveGazeData InLine):
theUserEyeGazeData.Currentobject = “”
Purpose: Records the current object for the gaze point.

NOTE: The script in the image above determines the value for this variable via the .OnsetTime

Property.

