
10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 1/9

Naming Files, Paths, and Namespaces
09/15/2020 • 14 minutes to read • +9

In this article

File and Directory Names

Paths

Namespaces

Related topics

All file systems supported by Windows use the concept of files and directories to access
data stored on a disk or device. Windows developers working with the Windows APIs for
file and device I/O should understand the various rules, conventions, and limitations of
names for files and directories.

Data can be accessed from disks, devices, and network shares using file I/O APIs. Files and
directories, along with namespaces, are part of the concept of a path, which is a string
representation of where to get the data regardless if it's from a disk or a device or a
network connection for a specific operation.

Some file systems, such as NTFS, support linked files and directories, which also follow file
naming conventions and rules just as a regular file or directory would. For additional
information, see Hard Links and Junctions and Reparse Points and File Operations.

For additional information, see the following subsections:

File and Directory Names
Naming Conventions
Short vs. Long Names

Paths
Fully Qualified vs. Relative Paths
Maximum Path Length Limitation

Namespaces
Win32 File Namespaces
Win32 Device Namespaces
NT Namespaces

Related topics

To learn about configuring Windows 10 to support long file paths, see Maximum Path
Length Limitation.

https://github.com/MicrosoftDocs/win32/blob/docs/desktop-src/FileIO/naming-a-file.md
https://docs.microsoft.com/en-us/windows/win32/fileio/hard-links-and-junctions
https://docs.microsoft.com/en-us/windows/win32/fileio/reparse-points-and-file-operations
https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 2/9

All file systems follow the same general naming conventions for an individual file: a base
file name and an optional extension, separated by a period. However, each file system,
such as NTFS, CDFS, exFAT, UDFS, FAT, and FAT32, can have specific and differing rules
about the formation of the individual components in the path to a directory or file. Note
that a directory is simply a file with a special attribute designating it as a directory, but
otherwise must follow all the same naming rules as a regular file. Because the term
directory simply refers to a special type of file as far as the file system is concerned, some
reference material will use the general term file to encompass both concepts of directories
and data files as such. Because of this, unless otherwise specified, any naming or usage
rules or examples for a file should also apply to a directory. The term path refers to one or
more directories, backslashes, and possibly a volume name. For more information, see the
Paths section.

Character count limitations can also be different and can vary depending on the file system
and path name prefix format used. This is further complicated by support for backward
compatibility mechanisms. For example, the older MS-DOS FAT file system supports a
maximum of 8 characters for the base file name and 3 characters for the extension, for a
total of 12 characters including the dot separator. This is commonly known as an 8.3 file
name. The Windows FAT and NTFS file systems are not limited to 8.3 file names, because
they have long file name support, but they still support the 8.3 version of long file names.

The following fundamental rules enable applications to create and process valid names for
files and directories, regardless of the file system:

Use a period to separate the base file name from the extension in the name of a
directory or file.

Use a backslash (\) to separate the components of a path. The backslash divides the
file name from the path to it, and one directory name from another directory name in
a path. You cannot use a backslash in the name for the actual file or directory because
it is a reserved character that separates the names into components.

Use a backslash as required as part of volume names, for example, the "C:\" in
"C:\path\file" or the "\\server\share" in "\\server\share\path\file" for Universal Naming
Convention (UNC) names. For more information about UNC names, see the Maximum
Path Length Limitation section.

File and Directory Names

Naming Conventions

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-volume

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 3/9

Do not assume case sensitivity. For example, consider the names OSCAR, Oscar, and
oscar to be the same, even though some file systems (such as a POSIX-compliant file
system) may consider them as different. Note that NTFS supports POSIX semantics for
case sensitivity but this is not the default behavior. For more information, see
CreateFile.

Volume designators (drive letters) are similarly case-insensitive. For example, "D:\"
and "d:\" refer to the same volume.

Use any character in the current code page for a name, including Unicode characters
and characters in the extended character set (128–255), except for the following:

The following reserved characters:
< (less than)
> (greater than)
: (colon)
" (double quote)
/ (forward slash)
\ (backslash)
| (vertical bar or pipe)
? (question mark)
* (asterisk)

Integer value zero, sometimes referred to as the ASCII NUL character.

Characters whose integer representations are in the range from 1 through 31,
except for alternate data streams where these characters are allowed. For more
information about file streams, see File Streams.

Any other character that the target file system does not allow.

Use a period as a directory component in a path to represent the current directory, for
example ".\temp.txt". For more information, see Paths.

Use two consecutive periods (..) as a directory component in a path to represent the
parent of the current directory, for example "..\temp.txt". For more information, see
Paths.

Do not use the following reserved names for the name of a file:

CON, PRN, AUX, NUL, COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8,
COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9. Also avoid these

https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/win32/fileio/file-streams

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 4/9

names followed immediately by an extension; for example, NUL.txt is not
recommended. For more information, see Namespaces.

Do not end a file or directory name with a space or a period. Although the underlying
file system may support such names, the Windows shell and user interface does not.
However, it is acceptable to specify a period as the first character of a name. For
example, ".temp".

A long file name is considered to be any file name that exceeds the short MS-DOS (also
called 8.3) style naming convention. When you create a long file name, Windows may also
create a short 8.3 form of the name, called the 8.3 alias or short name, and store it on disk
also. This 8.3 aliasing can be disabled for performance reasons either systemwide or for a
specified volume, depending on the particular file system.

Windows Server 2008, Windows Vista, Windows Server 2003 and Windows XP: 8.3
aliasing cannot be disabled for specified volumes until Windows 7 and Windows
Server 2008 R2.

On many file systems, a file name will contain a tilde (~) within each component of the
name that is too long to comply with 8.3 naming rules.

To request 8.3 file names, long file names, or the full path of a file from the system,
consider the following options:

To get the 8.3 form of a long file name, use the GetShortPathName function.
To get the long file name version of a short name, use the GetLongPathName
function.
To get the full path to a file, use the GetFullPathName function.

Short vs. Long Names

７ Note

Not all file systems follow the tilde substitution convention, and systems can be
configured to disable 8.3 alias generation even if they normally support it. Therefore,
do not make the assumption that the 8.3 alias already exists on-disk.

https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-getshortpathnamew
https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-getlongpathnamea
https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-getfullpathnamea

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 5/9

On newer file systems, such as NTFS, exFAT, UDFS, and FAT32, Windows stores the long file
names on disk in Unicode, which means that the original long file name is always
preserved. This is true even if a long file name contains extended characters, regardless of
the code page that is active during a disk read or write operation.

Files using long file names can be copied between NTFS file system partitions and
Windows FAT file system partitions without losing any file name information. This may not
be true for the older MS-DOS FAT and some types of CDFS (CD-ROM) file systems,
depending on the actual file name. In this case, the short file name is substituted if
possible.

The path to a specified file consists of one or more components, separated by a special
character (a backslash), with each component usually being a directory name or file name,
but with some notable exceptions discussed below. It is often critical to the system's
interpretation of a path what the beginning, or prefix, of the path looks like. This prefix
determines the namespace the path is using, and additionally what special characters are
used in which position within the path, including the last character.

If a component of a path is a file name, it must be the last component.

Each component of a path will also be constrained by the maximum length specified for a
particular file system. In general, these rules fall into two categories: short and long. Note
that directory names are stored by the file system as a special type of file, but naming rules
for files also apply to directory names. To summarize, a path is simply the string
representation of the hierarchy between all of the directories that exist for a particular file
or directory name.

For Windows API functions that manipulate files, file names can often be relative to the
current directory, while some APIs require a fully qualified path. A file name is relative to
the current directory if it does not begin with one of the following:

A UNC name of any format, which always start with two backslash characters ("\\").
For more information, see the next section.
A disk designator with a backslash, for example "C:\" or "d:\".
A single backslash, for example, "\directory" or "\file.txt". This is also referred to as an
absolute path.

Paths

Fully Qualified vs. Relative Paths

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 6/9

If a file name begins with only a disk designator but not the backslash after the colon, it is
interpreted as a relative path to the current directory on the drive with the specified letter.
Note that the current directory may or may not be the root directory depending on what it
was set to during the most recent "change directory" operation on that disk. Examples of
this format are as follows:

"C:tmp.txt" refers to a file named "tmp.txt" in the current directory on drive C.
"C:tempdir\tmp.txt" refers to a file in a subdirectory to the current directory on drive
C.

A path is also said to be relative if it contains "double-dots"; that is, two periods together in
one component of the path. This special specifier is used to denote the directory above the
current directory, otherwise known as the "parent directory". Examples of this format are as
follows:

"..\tmp.txt" specifies a file named tmp.txt located in the parent of the current
directory.
"..\..\tmp.txt" specifies a file that is two directories above the current directory.
"..\tempdir\tmp.txt" specifies a file named tmp.txt located in a directory named
tempdir that is a peer directory to the current directory.

Relative paths can combine both example types, for example "C:..\tmp.txt". This is useful
because, although the system keeps track of the current drive along with the current
directory of that drive, it also keeps track of the current directories in each of the different
drive letters (if your system has more than one), regardless of which drive designator is set
as the current drive.

In editions of Windows before Windows 10 version 1607, the maximum length for a path is
MAX_PATH, which is defined as 260 characters. In later versions of Windows, changing a
registry key or using the Group Policy tool is required to remove the limit. See Maximum
Path Length Limitation for full details.

There are two main categories of namespace conventions used in the Windows APIs,
commonly referred to as NT namespaces and the Win32 namespaces. The NT namespace
was designed to be the lowest level namespace on which other subsystems and
namespaces could exist, including the Win32 subsystem and, by extension, the Win32

Maximum Path Length Limitation

Namespaces

https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 7/9

namespaces. POSIX is another example of a subsystem in Windows that is built on top of
the NT namespace. Early versions of Windows also defined several predefined, or reserved,
names for certain special devices such as communications (serial and parallel) ports and
the default display console as part of what is now called the NT device namespace, and are
still supported in current versions of Windows for backward compatibility.

The Win32 namespace prefixing and conventions are summarized in this section and the
following section, with descriptions of how they are used. Note that these examples are
intended for use with the Windows API functions and do not all necessarily work with
Windows shell applications such as Windows Explorer. For this reason there is a wider
range of possible paths than is usually available from Windows shell applications, and
Windows applications that take advantage of this can be developed using these
namespace conventions.

For file I/O, the "\\?\" prefix to a path string tells the Windows APIs to disable all string
parsing and to send the string that follows it straight to the file system. For example, if the
file system supports large paths and file names, you can exceed the MAX_PATH limits that
are otherwise enforced by the Windows APIs. For more information about the normal
maximum path limitation, see the previous section Maximum Path Length Limitation.

Because it turns off automatic expansion of the path string, the "\\?\" prefix also allows the
use of ".." and "." in the path names, which can be useful if you are attempting to perform
operations on a file with these otherwise reserved relative path specifiers as part of the
fully qualified path.

Many but not all file I/O APIs support "\\?\"; you should look at the reference topic for each
API to be sure.

The "\\.\" prefix will access the Win32 device namespace instead of the Win32 file
namespace. This is how access to physical disks and volumes is accomplished directly,
without going through the file system, if the API supports this type of access. You can
access many devices other than disks this way (using the CreateFile and DefineDosDevice
functions, for example).

For example, if you want to open the system's serial communications port 1, you can use
"COM1" in the call to the CreateFile function. This works because COM1–COM9 are part of

Win32 File Namespaces

Win32 Device Namespaces

https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-definedosdevicew
https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-createfilea

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 8/9

the reserved names in the NT namespace, although using the "\\.\" prefix will also work
with these device names. By comparison, if you have a 100 port serial expansion board
installed and want to open COM56, you cannot open it using "COM56" because there is no
predefined NT namespace for COM56. You will need to open it using "\\.\COM56" because
"\\.\" goes directly to the device namespace without attempting to locate a predefined
alias.

Another example of using the Win32 device namespace is using the CreateFile function
with "\\.\PhysicalDiskX" (where X is a valid integer value) or "\\.\CdRomX". This allows you
to access those devices directly, bypassing the file system. This works because these device
names are created by the system as these devices are enumerated, and some drivers will
also create other aliases in the system. For example, the device driver that implements the
name "C:\" has its own namespace that also happens to be the file system.

APIs that go through the CreateFile function generally work with the "\\.\" prefix because
CreateFile is the function used to open both files and devices, depending on the
parameters you use.

If you're working with Windows API functions, you should use the "\\.\" prefix to access
devices only and not files.

Most APIs won't support "\\.\"; only those that are designed to work with the device
namespace will recognize it. Always check the reference topic for each API to be sure.

There are also APIs that allow the use of the NT namespace convention, but the Windows
Object Manager makes that unnecessary in most cases. To illustrate, it is useful to browse
the Windows namespaces in the system object browser using the Windows Sysinternals
WinObj tool. When you run this tool, what you see is the NT namespace beginning at the
root, or "\". The subfolder called "Global??" is where the Win32 namespace resides. Named
device objects reside in the NT namespace within the "Device" subdirectory. Here you may
also find Serial0 and Serial1, the device objects representing the first two COM ports if
present on your system. A device object representing a volume would be something like
"HarddiskVolume1", although the numeric suffix may vary. The name "DR0" under
subdirectory "Harddisk0" is an example of the device object representing a disk, and so on.

To make these device objects accessible by Windows applications, the device drivers create
a symbolic link (symlink) in the Win32 namespace, "Global??", to their respective device
objects. For example, COM0 and COM1 under the "Global??" subdirectory are simply

NT Namespaces

https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/FileAPI/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj

10/14/2020 Naming Files, Paths, and Namespaces - Win32 apps | Microsoft Docs

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file 9/9

Is this page helpful?

 Yes No

symlinks to Serial0 and Serial1, "C:" is a symlink to HarddiskVolume1, "Physicaldrive0" is a
symlink to DR0, and so on. Without a symlink, a specified device "Xxx" will not be available
to any Windows application using Win32 namespace conventions as described previously.
However, a handle could be opened to that device using any APIs that support the NT
namespace absolute path of the format "\Device\Xxx".

With the addition of multi-user support via Terminal Services and virtual machines, it has
further become necessary to virtualize the system-wide root device within the Win32
namespace. This was accomplished by adding the symlink named "GLOBALROOT" to the
Win32 namespace, which you can see in the "Global??" subdirectory of the WinObj browser
tool previously discussed, and can access via the path "\\?\GLOBALROOT". This prefix
ensures that the path following it looks in the true root path of the system object manager
and not a session-dependent path.

File System Functionality Comparison

Related topics

https://docs.microsoft.com/en-us/windows/win32/fileio/filesystem-functionality-comparison

